2-Butene, (E)-
- Formula: C4H8
- Molecular weight: 56.1063
- IUPAC Standard InChIKey: IAQRGUVFOMOMEM-ONEGZZNKSA-N
- CAS Registry Number: 624-64-6
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Stereoisomers:
- Other names: (E)-2-Butene; trans-Butene; trans-1,2-Dimethylethylene; trans-2-Butene; 2-trans-Butene; (E)-2-C4H8; 2-Butene, trans-; Butene-2,trans; t-Butene-2; (E)-but-2-ene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C4H8 = C4H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -0.9 ± 0.5 | kcal/mol | AVG | N/A | Average of 7 values; Individual data points |
By formula: C4H8 = C4H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -3.00 ± 0.20 | kcal/mol | Eqk | Meyer and Stroz, 1972 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -2.64 kcal/mol; At 300 K; ALS |
ΔrH° | -2.96 ± 0.40 | kcal/mol | Eqk | Happel, Hnatow, et al., 1971 | gas phase; ALS |
ΔrH° | -3.03 | kcal/mol | Eqk | Maccoll and Ross, 1965 | gas phase; GC; ALS |
ΔrH° | -2.80 ± 0.20 | kcal/mol | Eqk | Golden, Egger, et al., 1964 | gas phase; ALS |
ΔrH° | -2.75 | kcal/mol | Ciso | Levanova and Andreevskii, 1964 | gas phase; At 420.3 K; ALS |
By formula: HBr + C4H8 = C4H9Br
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -17.26 ± 0.12 | kcal/mol | Cm | Lacher, Billings, et al., 1952 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -17.3 ± 1.4 kcal/mol; Heat of hydrobromination at 373 K; ALS |
By formula: C3H9Si+ + C4H8 = (C3H9Si+ • C4H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.9 | kcal/mol | PHPMS | Li and Stone, 1989 | gas phase; condensation; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 41.5 | cal/mol*K | PHPMS | Li and Stone, 1989 | gas phase; condensation; M |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -27.38 ± 0.10 | kcal/mol | Chyd | Kistiakowsky, Ruhoff, et al., 1935 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -27.621 ± 0.021 kcal/mol; At 355 °K; ALS |
By formula: C4H8 + Br2 = C4H8Br2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -28.95 ± 0.20 | kcal/mol | Cm | Conn, Kistiakowsky, et al., 1938 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -29.08 ± 0.20 kcal/mol; At 355 °K; ALS |
By formula: C4H9Cl = C4H8 + HCl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.25 | kcal/mol | Eqk | Levanova and Andreevskii, 1964 | gas phase; At 420 K; ALS |
By formula: C4H8 + C2H4 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -16.7 | kcal/mol | Eqk | Scacchi and Back, 1977 | liquid phase; ALS |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Meyer and Stroz, 1972
Meyer, E.F.; Stroz, D.G.,
Thermodynamics of n-butene isomerization,
J. Am. Chem. Soc., 1972, 94, 6344-6347. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Happel, Hnatow, et al., 1971
Happel, J.; Hnatow, M.A.; Mezaki, R.,
Isomerization equilibrium constants of n-butenes,
J. Chem. Eng. Data, 1971, 16, 206-209. [all data]
Maccoll and Ross, 1965
Maccoll, A.; Ross, R.A.,
The hydrogen bromide catalyzed isomerization of n-butenes. I. equilibrium values,
J. Am. Chem. Soc., 1965, 87, 1169-1170. [all data]
Golden, Egger, et al., 1964
Golden, D.M.; Egger, K.W.; Benson, S.W.,
Iodine-catalyzed isomerization of olefins. I. Thermodynamics data from equilibrium studies of positional and geometrical isomerization of 1-butene and 2-butene,
J. Am. Chem. Soc., 1964, 86, 5416-5420. [all data]
Levanova and Andreevskii, 1964
Levanova, S.V.; Andreevskii, D.N.,
The equilibrium of 2-chlorobutane dehydrochlorination,
Neftekhimiya, 1964, 4, 329-336. [all data]
Lacher, Billings, et al., 1952
Lacher, J.R.; Billings, T.J.; Campion, D.E.,
Vapor phase heats of hydrobromination of the isomeric butenes,
J. Am. Chem. Soc., 1952, 74, 5291-52. [all data]
Li and Stone, 1989
Li, X.; Stone, J.A.,
Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes,
J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013
. [all data]
Kistiakowsky, Ruhoff, et al., 1935
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E.,
Heats of organic reactions. II. Hydrogenation of some simpler olefinic hydrocarbons,
J. Am. Chem. Soc., 1935, 57, 876-882. [all data]
Conn, Kistiakowsky, et al., 1938
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A.,
Heats of organic reactions. VII. Addition of halogens to olefins,
J. Am. Chem. Soc., 1938, 60, 2764-2771. [all data]
Scacchi and Back, 1977
Scacchi, G.; Back, M.H.,
The cycloaddition of ethylene to butene-2. II. Energy relations,
Int. J. Chem. Kinet., 1977, 9, 525-534. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.