Decane
- Formula: C10H22
- Molecular weight: 142.2817
- IUPAC Standard InChIKey: DIOQZVSQGTUSAI-UHFFFAOYSA-N
- CAS Registry Number: 124-18-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: n-Decane; n-C10H22; UN 2247
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: H2 + C10H20 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -124.2 ± 1.2 | kJ/mol | Chyd | Rogers and Skanupong, 1974 | liquid phase; solvent: Hexane |
ΔrH° | -125.1 ± 1.3 | kJ/mol | Chyd | Bretschneider and Rogers, 1970 | liquid phase; solvent: galcial acetic acid |
By formula: 3H2 + C10H16 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -400. ± 2. | kJ/mol | Chyd | Skinner and Snelson, 1959 | liquid phase; solvent: Acetic acid |
By formula: 3H2 + C10H16 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -401.3 ± 0.8 | kJ/mol | Chyd | Skinner and Snelson, 1959 | liquid phase; solvent: Acetic acid |
By formula: H2 + C10H20 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -119.5 ± 1.5 | kJ/mol | Chyd | Rogers and Siddiqui, 1975 | liquid phase; solvent: n-Hexane |
By formula: 2H2 + C10H18 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -273.1 ± 2.1 | kJ/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane |
By formula: 2H2 + C10H18 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -271.4 ± 2.0 | kJ/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane |
By formula: 2H2 + C10H18 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -269.4 ± 1.7 | kJ/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane |
By formula: 2H2 + C10H18 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -268.2 ± 2.0 | kJ/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane |
By formula: 2H2 + C10H18 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -291.4 ± 2.1 | kJ/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Rogers and Skanupong, 1974
Rogers, D.W.; Skanupong, S.,
Heats of hydrogenation of sixteen terminal monoolefins. The alternating effect,
J. Phys. Chem., 1974, 78, 2569-2572. [all data]
Bretschneider and Rogers, 1970
Bretschneider, E.; Rogers, D.W.,
A new microcalorimeter: heats of hydrogenation of four monoolefins,
Mikrochim. Acta, 1970, 482-490. [all data]
Skinner and Snelson, 1959
Skinner, H.A.; Snelson, A.,
Heats of hydrogenation Part 3.,
Trans. Faraday Soc., 1959, 55, 405-407. [all data]
Rogers and Siddiqui, 1975
Rogers, D.W.; Siddiqui, N.A.,
Heats of hydrogenation of large molecules. I. Esters of unsaturated fatty acids,
J. Phys. Chem., 1975, 79, 574-577. [all data]
Rogers, Dagdagan, et al., 1979
Rogers, D.W.; Dagdagan, O.A.; Allinger, N.L.,
Heats of hydrogenation and formation of linear alkynes and a molecular mechanics interpretation,
J. Am. Chem. Soc., 1979, 101, 671-676. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.