Thiophene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C4H3S- + Hydrogen cation = Thiophene

By formula: C4H3S- + H+ = C4H4S

Quantity Value Units Method Reference Comment
Δr381.2 ± 3.1kcal/molG+TSDePuy, Kass, et al., 1988gas phase; Between MeOH, EtOH. D exchange implies anion at C-2.; B
Quantity Value Units Method Reference Comment
Δr373.0 ± 3.0kcal/molIMRBDePuy, Kass, et al., 1988gas phase; Between MeOH, EtOH. D exchange implies anion at C-2.; B

C4H4S+ + Thiophene = (C4H4S+ • Thiophene)

By formula: C4H4S+ + C4H4S = (C4H4S+ • C4H4S)

Quantity Value Units Method Reference Comment
Δr16.9kcal/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr23.1cal/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

(C4H4S+ • Thiophene) + Thiophene = (C4H4S+ • 2Thiophene)

By formula: (C4H4S+ • C4H4S) + C4H4S = (C4H4S+ • 2C4H4S)

Quantity Value Units Method Reference Comment
Δr7.5kcal/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; ΔrH<; M

C4H5S+ + Thiophene = (C4H5S+ • Thiophene)

By formula: C4H5S+ + C4H4S = (C4H5S+ • C4H4S)

Quantity Value Units Method Reference Comment
Δr11.5kcal/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; ΔrH<; M

Vibrational and/or electronic energy levels

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   C     Symmetry Number σ = 2


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1 1 CH str 3126  C 3126 M gas 3107 p liq.
a1 2 CH str 3098  C 3098 S gas 3084 liq.
a1 3 ip-Ring II 1409  C 1409 S gas 1407 p liq.
a1 4 ip-Ring III 1360  C 1360 VW gas 1358 p liq.
a1 5 CH ip-bend 1083  C 1083 S gas 1081 p liq.
a1 6 CH ip-bend 1036  C 1036 S gas 1035 liq.
a1 7 ip-Ring IV 839  C 839 VS gas 832 p liq.
a1 8 ip-Ring VII 608  C 608 W gas 606 p liq.
a2 9 CH op-bend 903  D 900 ia VW sln. 903 dp liq.
a2 10 CH op-bend 688  D  ia 688 dp liq.
a2 11 op-Ring I 567  D 565 ia VW liq. 567 dp liq.
b1 12 CH str 3125  E Frequencies were estimated from isotopic rule
b1 13 CH str 3086  C 3086 S gas 3076 sh liq.
b1 14 ip-Ring I 1504  D 1504 VW liq. 1502 dp liq.
b1 15 CH ip-bend 1256  C 1256 S gas 1257 liq.
b1 16 CH ip-bend 1085  E OV5). Frequencies were estimated from isotopic rule
b1 17 ip-Ring V 872  C 872 M gas 869 dp liq.
b1 18 ip-Ring VI 751  D 763 VW gas 751 dp liq.
b2 19 CH op-bend 867  E OC919, 2ν19)
b2 20 CH op-bend 712  C 712 VS gas
b2 21 op-Ring II 452  C 452 W gas 453 dp liq.

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
VWVery weak
iaInactive
shShoulder
pPolarized
dpDepolarized
OCFrequency estimated from an overtone or a combination tone indicated in the parentheses.
OVOverlapped by band indicated in parentheses.
C3~6 cm-1 uncertainty
D6~15 cm-1 uncertainty
E15~30 cm-1 uncertainty

References

Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

DePuy, Kass, et al., 1988
DePuy, C.H.; Kass, S.R.; Bean, G.P., Formation and Reactions of Heteroaromatic Anions in the Gas Phase, J. Org. Chem., 1988, 53, 19, 4427, https://doi.org/10.1021/jo00254a001 . [all data]

Hiraoka, Takimoto, et al., 1987
Hiraoka, K.; Takimoto, H.; Yamabe, S., Stabilities and Structures in Cluster Ions of Five-Membered Heterocyclic Compounds Containing O, N and S Atoms, J. Am. Chem. Soc., 1987, 109, 24, 7346, https://doi.org/10.1021/ja00258a018 . [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, References