1-Propene, 2-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C4H7- + Hydrogen cation = 1-Propene, 2-methyl-

By formula: C4H7- + H+ = C4H8

Quantity Value Units Method Reference Comment
Δr393.0 ± 1.8kcal/molEndoWenthold, Hu, et al., 1999gas phase; B
Δr387.0 ± 2.0kcal/molD-EAWenthold, Polak, et al., 1996gas phase; B
Δr390.3 ± 2.3kcal/molG+TSBartmess and Burnham, 1984gas phase; B
Quantity Value Units Method Reference Comment
Δr385.6 ± 1.9kcal/molH-TSWenthold, Hu, et al., 1999gas phase; B
Δr379.6 ± 2.1kcal/molH-TSWenthold, Polak, et al., 1996gas phase; B
Δr382.9 ± 2.2kcal/molIMREBartmess and Burnham, 1984gas phase; B

NH4+ + 1-Propene, 2-methyl- = (NH4+ • 1-Propene, 2-methyl-)

By formula: H4N+ + C4H8 = (H4N+ • C4H8)

Quantity Value Units Method Reference Comment
Δr35.0kcal/molPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; condensation; M
Δr34.9kcal/molPHPMSMeot-Ner (Mautner) and Sieck, 1990gas phase; forms t-C4H9NH3+; M
Quantity Value Units Method Reference Comment
Δr37.1cal/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; condensation; M
Δr39.2cal/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1990gas phase; forms t-C4H9NH3+; M

Propane, 2-chloro-2-methyl- = 1-Propene, 2-methyl- + Hydrogen chloride

By formula: C4H9Cl = C4H8 + HCl

Quantity Value Units Method Reference Comment
Δr17.7 ± 0.5kcal/molEqkHowlett, 1955gas phase; ALS
Δr17.70kcal/molEqkHowlett, 1951gas phase; Hf-gas-(390) -44.4 kcal/mol; ALS
Δr17.1 ± 0.5kcal/molEqkKistiakowsky and Stauffer, 1937gas phase; ALS

1-Propene, 2-methyl- + Ethanol = Propane, 2-ethoxy-2-methyl-

By formula: C4H8 + C2H6O = C6H14O

Quantity Value Units Method Reference Comment
Δr-7.65kcal/molCmSola, Pericas, et al., 1995liquid phase; ALS
Δr-7.65kcal/molKinSola, Pericas, et al., 1995liquid phase; ALS
Δr-14.9 ± 0.5kcal/molEqkIborra, Izquierdo, et al., 1989gas phase; GC; ALS

C3H9Si+ + 1-Propene, 2-methyl- = (C3H9Si+ • 1-Propene, 2-methyl-)

By formula: C3H9Si+ + C4H8 = (C3H9Si+ • C4H8)

Quantity Value Units Method Reference Comment
Δr36.5kcal/molPHPMSLi and Stone, 1989gas phase; condensation; M
Quantity Value Units Method Reference Comment
Δr42.7cal/mol*KPHPMSLi and Stone, 1989gas phase; condensation; M

1-Propene, 2-methyl- + Hydrogen = Isobutane

By formula: C4H8 + H2 = C4H10

Quantity Value Units Method Reference Comment
Δr-28.15 ± 0.10kcal/molChydKistiakowsky, Ruhoff, et al., 1935gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -28.39 ± 0.18 kcal/mol; At 355 °K; ALS

tert-Butyl iodide = Hydrogen iodide + 1-Propene, 2-methyl-

By formula: C4H9I = HI + C4H8

Quantity Value Units Method Reference Comment
Δr-19.4 ± 0.5kcal/molEqkBenson and Amano, 1962gas phase; ALS
Δr-19.2 ± 1.0kcal/molEqkJones and Ogg, 1937gas phase; At 408-464 K; ALS

1-Propene, 2-methyl- + Isopropyl Alcohol = Propane, 2-methyl-2-(1-methylethoxy)-

By formula: C4H8 + C3H8O = C7H16O

Quantity Value Units Method Reference Comment
Δr-5.47 ± 0.31kcal/molEqkCalderon, Tejero, et al., 1997liquid phase; ALS
Δr-5.19 ± 0.38kcal/molCmSola, Pericas, et al., 1997liquid phase; ALS

Lithium ion (1+) + 1-Propene, 2-methyl- = (Lithium ion (1+) • 1-Propene, 2-methyl-)

By formula: Li+ + C4H8 = (Li+ • C4H8)

Quantity Value Units Method Reference Comment
Δr28.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

1-Propene, 2-methyl- + Hydrogen chloride = Propane, 2-chloro-2-methyl-

By formula: C4H8 + HCl = C4H9Cl

Quantity Value Units Method Reference Comment
Δr-15.08 ± 0.42kcal/molCmArnett and Pienta, 1980liquid phase; solvent: Methylene chloride; Hydrochloronation; ALS

1-Propene, 2-methyl- + Water = 2-Propanol, 2-methyl-

By formula: C4H8 + H2O = C4H10O

Quantity Value Units Method Reference Comment
Δr-12.775kcal/molEqkEberz and Lucas, 1934gas phase; solvent: Aqueous; Heat of hydration; ALS

Sodium ion (1+) + 1-Propene, 2-methyl- = (Sodium ion (1+) • 1-Propene, 2-methyl-)

By formula: Na+ + C4H8 = (Na+ • C4H8)

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
10.0298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

(CAS Reg. No. 38130-30-2 • 42949672951-Propene, 2-methyl-) + 1-Propene, 2-methyl- = CAS Reg. No. 38130-30-2

By formula: (CAS Reg. No. 38130-30-2 • 4294967295C4H8) + C4H8 = CAS Reg. No. 38130-30-2

Quantity Value Units Method Reference Comment
Δr15.5 ± 2.1kcal/molN/ADePuy, Gronert, et al., 1989gas phase; B

(i-C4H9 • 42949672951-Propene, 2-methyl-) + 1-Propene, 2-methyl- = i-C4H9

By formula: (C4H9 • 4294967295C4H8) + C4H8 = C4H9

Quantity Value Units Method Reference Comment
Δr15.3 ± 2.1kcal/molN/ADePuy, Gronert, et al., 1989gas phase; B

Propane, 2-methoxy-2-methyl- = 1-Propene, 2-methyl- + Methyl Alcohol

By formula: C5H12O = C4H8 + CH4O

Quantity Value Units Method Reference Comment
Δr9.51 ± 0.1kcal/molCmArntz and Gottlieb, 1985gas phase; At 319K; ALS

Propane, 1,2-dibromo-2-methyl- = 1-Propene, 2-methyl- + Bromine

By formula: C4H8Br2 = C4H8 + Br2

Quantity Value Units Method Reference Comment
Δr33.40 ± 0.11kcal/molCmSunner and Wulff, 1974liquid phase; ALS

1-Propene, 2-methyl- + 2-Butanol = 2-(tert-butoxy)butane

By formula: C4H8 + C4H10O = C8H18O

Quantity Value Units Method Reference Comment
Δr-9.01 ± 0.57kcal/molEqkSharonov, Mishentseva, et al., 1991liquid phase; ALS

1-Propene, 2-methyl- + 1-Propanol, 2-methyl- = Propane, 1-(1,1-dimethylethoxy)-2-methyl-

By formula: C4H8 + C4H10O = C8H18O

Quantity Value Units Method Reference Comment
Δr-8.68 ± 0.43kcal/molEqkSharonov, Mishentseva, et al., 1991liquid phase; ALS

1-Propene, 2-methyl- + 1-Butanol = 1-Tert-butoxybutane

By formula: C4H8 + C4H10O = C8H18O

Quantity Value Units Method Reference Comment
Δr-8.32 ± 0.65kcal/molEqkSharonov, Mishentseva, et al., 1991liquid phase; ALS

Propane, 2-ethoxy-2-methyl- = 1-Propene, 2-methyl- + Ethanol

By formula: C6H14O = C4H8 + C2H6O

Quantity Value Units Method Reference Comment
Δr8.47 ± 0.46kcal/molEqkSharonov, Rozhnov, et al., 1995liquid phase; ALS

Propane, 2-bromo-2-methyl- = 1-Propene, 2-methyl- + Hydrogen chloride

By formula: C4H9Br = C4H8 + HCl

Quantity Value Units Method Reference Comment
Δr18.9 ± 0.9kcal/molEqkKistiakowsky and Stauffer, 1937gas phase; ALS

Hydrogen bromide + 1-Propene, 2-methyl- = Propane, 2-bromo-2-methyl-

By formula: HBr + C4H8 = C4H9Br

Quantity Value Units Method Reference Comment
Δr-18.850kcal/molEqkHowlett, 1957gas phase; ALS

1-Propene, 2-methyl- + Methyl Alcohol = Propane, 2-methoxy-2-methyl-

By formula: C4H8 + CH4O = C5H12O

Quantity Value Units Method Reference Comment
Δr-8.08kcal/molCmSol, Perics, et al., 1994liquid phase; ALS

2-Propanol, 2-methyl- = 1-Propene, 2-methyl- + Water

By formula: C4H10O = C4H8 + H2O

Quantity Value Units Method Reference Comment
Δr12.6kcal/molEqkTaft and Riesz, 1955liquid phase; ALS

p-Cresol + 1-Propene, 2-methyl- = Phenol, 2-(1,1-dimethylethyl)-4-methyl-

By formula: C7H8O + C4H8 = C11H16O

Quantity Value Units Method Reference Comment
Δr15.0 ± 0.67kcal/molEqkVerevkin, Nesterova, et al., 1984gas phase; ALS

Phenol, p-tert-butyl- = Phenol + 1-Propene, 2-methyl-

By formula: C10H14O = C6H6O + C4H8

Quantity Value Units Method Reference Comment
Δr17.0 ± 0.50kcal/molEqkVerevkin, 1982gas phase; ALS

Vibrational and/or electronic energy levels

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   C     Symmetry Number σ = 2


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1 1 CH2 s-str 2989  D 2991 M sln. 2989 S p liq.
a1 2 CH3 d-str 2941  C 2940.8 gas 2930 W p liq.
a1 3 CH3 s-str 2911  D 2919 W gas 2911 S p liq.
a1 4 C=C str 1661  C 1661.1 S gas 1655 S p liq.
a1 5 CH3 d-deform 1470  C 1469.6 S gas 1462 VW liq.
a1 6 CH2 scis 1416  D 1419 W sln. 1416 S p liq.
a1 7 CH3 s-deform 1366  D 1366 VW p liq.
a1 8 CH3 rock 1064  C 1063.9 S gas 1058 W p liq.
a1 9 C-C str 801  C 801 W gas 803 VS p liq.
a1 10 C=CC2 ip-deform 383  D 384 W sln. 383 W liq.
a2 11 CH3 d-str 2970  D  ia 2970 W p liq. OV17)
a2 12 CH3 d-deform 1459  D  ia 1459 VW liq.
a2 13 CH3 rock 1076  E  ia CF
a2 14 CH2 twist 981  E  ia CF
a2 15 CH3 torsion 193  E  ia CF
b1 16 CH2 a-str 3086  C 3086.0 S gas 3079 W dp liq.
b1 17 CH3 d-str 2980  C 2980.4 gas 2970 W dp liq. OV11)
b1 18 CH3 s-str 2893  C 2892.9 W gas 2892 W dp liq.
b1 19 CH3 d-deform 1458  C 1458.4 S gas
b1 20 CH3 s-deform 1381  C 1381.2 S gas 1386 W liq.
b1 21 C-C str 1282  C 1281.9 S gas 1281 W liq.
b1 22 CH3 rock 1043  E CF
b1 23 CH2 rock 974  C 973.7 W gas 972 VW liq.
b1 24 C=CC2 ip-deform 430  D 430 sh sln.
b2 25 CH3 d-str 2945  C 2944.9 S gas
b2 26 CH3 d-deform 1444  C 1443.7 S gas 1439 VW liq.
b2 27 CH3 rock 1079  C 1079.0 S gas
b2 28 CH2 wag 890  C 889.7 VS gas 883 W dp liq.
b2 29 C=CC2 op-deform 429  C 429.1 S gas 431 W dp liq.
b2 30 CH3 torsion 196  C 196 VW gas

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
VWVery weak
iaInactive
shShoulder
pPolarized
dpDepolarized
CFCalculated frequency
OVOverlapped by band indicated in parentheses.
C3~6 cm-1 uncertainty
D6~15 cm-1 uncertainty
E15~30 cm-1 uncertainty

References

Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wenthold, Hu, et al., 1999
Wenthold, P.G.; Hu, J.; Squires, R.R.; Lineberger, W.C., Photoelectron spectroscopy of the trimethylenemethane negative ion, J. Am. Soc. Mass Spectrom., 1999, 10, 9, 800-809, https://doi.org/10.1016/S1044-0305(99)00043-4 . [all data]

Wenthold, Polak, et al., 1996
Wenthold, P.G.; Polak, M.L.; Lineberger, W.C., Photoelectron Spectroscopy of the Allyl and 2-Methylallyl Anions, J. Phys. Chem., 1996, 100, 17, 6920, https://doi.org/10.1021/jp953401n . [all data]

Bartmess and Burnham, 1984
Bartmess, J.E.; Burnham, R., Effect of central substituents on the gas phase acidities of propenes, J. Org. Chem., 1984, 49, 1382. [all data]

Meot-Ner (Mautner) and Sieck, 1991
Meot-Ner (Mautner), M.; Sieck, L.W., Proton affinity ladders from variable-temperature equilibrium measurements. 1. A reevaluation of the upper proton affinity range, J. Am. Chem. Soc., 1991, 113, 12, 4448, https://doi.org/10.1021/ja00012a012 . [all data]

Meot-Ner (Mautner) and Sieck, 1990
Meot-Ner (Mautner), M.; Sieck, L.W., Ion Thermochemistry at High Temperatures. 1. Thermochemistry of the Ammonium Ion from Variable - Temperature Equilibrium Measurements. Proton Transfer, Association, and Decomposition Reactions in Ammonia, Isobutene, and t-Butylamine, J. Phys. Chem., 1990, 94, 19, 7730, https://doi.org/10.1021/j100382a076 . [all data]

Howlett, 1955
Howlett, K.E., The use of equilibrium constants to calculate thermodynamic quantities. Part II, J. Chem. Soc., 1955, 1784-17. [all data]

Howlett, 1951
Howlett, K.E., The use of equilibrium constants to calculate thermodynamic quantities. Part I. Equilibria in the system tert.-butyl chloride, isobutene, hydrogen chloride, J. Chem. Soc., 1951, 1409-1412. [all data]

Kistiakowsky and Stauffer, 1937
Kistiakowsky, G.B.; Stauffer, C.H., The kinetics of gaseous addition of halogen acids to isobutene, 1937, 165-170. [all data]

Sola, Pericas, et al., 1995
Sola, L.; Pericas, M.A.; Cunill, F.; Tejero, J., Thermodynamic and kinetic studies of the liquid phase synthesis of tert-butyl ethyl ether using a reaction calorimeter, Ind. Eng. Chem. Res., 1995, 34, 3718-3725. [all data]

Iborra, Izquierdo, et al., 1989
Iborra, M.; Izquierdo, J.F.; Tejero, J.; Cunill, F., Equilibrium constant for ethyl tert-butyl ether vapor-phase synthesis, J. Chem. Eng. Data, 1989, 34, 1-5. [all data]

Li and Stone, 1989
Li, X.; Stone, J.A., Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes, J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013 . [all data]

Kistiakowsky, Ruhoff, et al., 1935
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. II. Hydrogenation of some simpler olefinic hydrocarbons, J. Am. Chem. Soc., 1935, 57, 876-882. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Benson and Amano, 1962
Benson, S.W.; Amano, A., Thermodynamic properties of tertiary iodides, J. Chem. Phys., 1962, 37, 197-198. [all data]

Jones and Ogg, 1937
Jones, J.L.; Ogg, R.A., Jr., The equilibrium (CH3)3CI = (CH3)2C = CH2 + HI, J. Am. Chem. Soc., 1937, 59, 1943-1945. [all data]

Calderon, Tejero, et al., 1997
Calderon, A.; Tejero, J.; Izuierdo, J.F.; Iborra, M.; Cunill, F., Equilibrium Constants for the liquid-phase synthesis of isopropyl tert-butyl ether from 2-propanol and isobutene, Ind. Eng. Chem. Res., 1997, 36, 896-902. [all data]

Sola, Pericas, et al., 1997
Sola, L.; Pericas, M.A.; Cunill, F.; Izquierdo, J.F., A comparative thermodynamic and kinetic study of the reaction between olefins and light alcohols leading to branced ethers. Reaction calorimetry study of the formation of tert-amyl methyl ether (TAME) and tert-butyl isopropyl ether (IPTBE), Ind. Eng. Chem. Res., 1997, 36, 2012-2018. [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Arnett and Pienta, 1980
Arnett, E.M.; Pienta, N.J., Stabilities of carbonium ions in solution. 12. Heats of formation of alkyl chlorides as an entree to heats of solvation of aliphatic carbonium ions, J. Am. Chem. Soc., 1980, 102, 3329-3334. [all data]

Eberz and Lucas, 1934
Eberz, W.F.; Lucas, H.J., The hydration of unsaturated compounds. II. The equilibrium between i-butene and t-butanol and the free energy of hydration of i-butene, J. Am. Chem. Soc., 1934, 56, 1230-1234. [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Arntz and Gottlieb, 1985
Arntz, H.; Gottlieb, K., High-pressure heat-flow calorimeter determination of the enthalpy of reaction for the synthesis of methyl t-butyl ether from methanol and 2-methylpropene, J. Chem. Thermodyn., 1985, 17, 967-972. [all data]

Sunner and Wulff, 1974
Sunner, S.; Wulff, C.A., The enthalpy of formation of 1,1-dibromo-2-methylpropane, J. Chem. Thermodyn., 1974, 6, 287-292. [all data]

Sharonov, Mishentseva, et al., 1991
Sharonov, K.G.; Mishentseva, Y.B.; Rozhnov, A.M.; Miroshnichenko, E.A.; Korchatova, L.I., Molar enthalpies of formation and vaporizqation of t-butoxybutanes and thermodynamics of their synthesis from a butanol and 2-methylpropene I. Equilibria of synthesis reactions of t-butoxybutanes in the liquid phase, J. Chem. Thermodyn., 1991, 23, 141-145. [all data]

Sharonov, Rozhnov, et al., 1995
Sharonov, K.G.; Rozhnov, A.M.; Korol'kov, A.V.; Karaseva, S.Y., Enthalpies of formation of 2-methyl-2-ethoxypropane and 2-ethyl-2-ethoxypropane from equilibrium measurements, J. Chem. Thermodyn., 1995, 27, 751-753. [all data]

Howlett, 1957
Howlett, K.E., The use of equilibrium constants to calculate thermodynamic quantities. Part III. Equilibria in the system tert.-butyl bromideisobutene-hydrogen bromide, J. Chem. Soc., 1957, 2834-2836. [all data]

Sol, Perics, et al., 1994
Sol, L.; Perics, M.A.; Cunill, F.; Iborra, M., Reaction calorimetry study of the liquid-phase synthesis of tert-butyl methyl ether, Ind. Eng. Chem. Res., 1994, 33, 2578-2583. [all data]

Taft and Riesz, 1955
Taft, R.W., Jr.; Riesz, P., Thermodynamic properties for the system isobutene-t-butyl alcohol, J. Am. Chem. Soc., 1955, 77, 902-904. [all data]

Verevkin, Nesterova, et al., 1984
Verevkin, S.P.; Nesterova, T.N.; Rozhnov, A.M., The equilibrium in the dealkylation of o-t-butyl-p-cresol, Russ. J. Phys. Chem. (Engl. Transl.), 1984, 58, 284. [all data]

Verevkin, 1982
Verevkin, S.P., Study of equilibrium of tert-butylphenol dealkylation in the gas phase, Termodin. Organ. Soedin., 1982, 67-70. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, References