Hexanedioic acid

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfsolid-1021.32kJ/molCcbContineanu, Corlateanu, et al., 1980ALS
Δfsolid-998.22 ± 0.42kJ/molCcbBabinkov, Nistratov, et al., 1979ALS
Quantity Value Units Method Reference Comment
Δcsolid-2768.7 ± 5.9kJ/molCcbContineanu, Corlateanu, et al., 1980Corresponding Δfsolid = -1021.53 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-2791.98 ± 0.42kJ/molCcbBabinkov, Nistratov, et al., 1979Corresponding Δfsolid = -998.23 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-2795.9 ± 0.75kJ/molCcrSunner, 1946Corresponding Δfsolid = -994.33 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-2802.4 ± 1.4kJ/molCcbVerkade, Hartman, et al., 1926Reanalyzed by Cox and Pilcher, 1970, Original value = -2799. kJ/mol; See Verkade, Hartman, et al., 1924; Corresponding Δfsolid = -987.76 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Phase change data

Go To: Top, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Tfus425. ± 4.KAVGN/AAverage of 12 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple424.7KN/ABabinkov, Nistratov, et al., 1979, 2Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Δvap105.2kJ/molCGCRoux, Temprado, et al., 2005Based on data from 424. to 503. K.; AC
Quantity Value Units Method Reference Comment
Δsub133.6 ± 1.3kJ/molMERibeiro da Silva, Monte, et al., 1999See also Davies and Thomas, 1960.; AC
Δsub129. ± 1.kJ/molVDavies and Thomas, 1960ALS

Reduced pressure boiling point

Tboil (K) Pressure (bar) Reference Comment
538.20.133Weast and Grasselli, 1989BS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
92.0447.AStephenson and Malanowski, 1987Based on data from 432. to 611. K. See also Stull, 1947.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
432.7 to 610.75.473062813.066-95.951Stull, 1947Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
125. ± 20.353. to 373.METaulelle, Sitja, et al., 2009AC
145. ± 4.328. to 368.TPDCappa, Lovejoy, et al., 2007AC
146.2285. to 307.TPTDChattopadhyay and Ziemann, 2005AC
140.295. to 318.TPTDChattopadhyay, Tobias, et al., 2001Values based on TPTD method are not consistent with values determined by other experimental methods; AC
129.3 ± 2.5383.MENitta, Seki, et al., 1950Based on data from 359. to 406. K. See also Jones, 1960 and Cox and Pilcher, 1970, 2.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
34.852425.5Cingolani and Berchiesi, 1974DH
33.7419.Roux, Temprado, et al., 2005AC
34.85426.4Acree, 1991AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
81.92425.5Cingolani and Berchiesi, 1974DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


References

Go To: Top, Condensed phase thermochemistry data, Phase change data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Contineanu, Corlateanu, et al., 1980
Contineanu, I.; Corlateanu, E.; Hersocovici, J.; Marchidan, D.I., Combustion and formation enthalpies of 1,6-hexanediol and adipic acid, Rev. Chim. (Bucharest), 1980, 31, 763-764. [all data]

Babinkov, Nistratov, et al., 1979
Babinkov, A.G.; Nistratov, V.P.; Larina, V.N.; Shvetsova, K.G.; Sapozhnikov, V.N.; Zhilitskaya, O.M., Thermodynamic properties of adipic acid, Termodin. Org. Soedin., 1979, 28-33. [all data]

Sunner, 1946
Sunner, S., Determination of combustion heats of organo-sulphur compounds, Svensk. Kim. Tidr., 1946, 58, 71-81. [all data]

Verkade, Hartman, et al., 1926
Verkade, P.E.; Hartman, H.; Coops, J., Calorimetric researches. X. Heats of combustion of successive terms of homologous series: dicarboxylic acids of the oxalic acid series, Rec. Trav. Chim. Pays/Bas, 1926, 45, 373-393. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Verkade, Hartman, et al., 1924
Verkade, P.E.; Hartman, H.; Coops, J., Jr., Chemistry - The molecular heat of combustion of successive terms of homologous series, Kom. Med. Akad. Ueknschap. Proc., 1924, 27, 859-866. [all data]

Babinkov, Nistratov, et al., 1979, 2
Babinkov, A.G.; Nistratov, V.P.; Larina, V.N.; Shvetsova, K.G.; Sapozhnikov, V.N.; Zhilitskaya, O.M., Thermodynamic properties of aclipic acid., Termodin. Org. Soedin., 1979, No. 8, 28. [all data]

Roux, Temprado, et al., 2005
Roux, Maria Victoria; Temprado, Manuel; Chickos, James S., Vaporization, fusion and sublimation enthalpies of the dicarboxylic acids from C4 to C14 and C16, The Journal of Chemical Thermodynamics, 2005, 37, 9, 941-953, https://doi.org/10.1016/j.jct.2004.12.011 . [all data]

Ribeiro da Silva, Monte, et al., 1999
Ribeiro da Silva, Manuel A.V.; Monte, Manuel J.S.; Ribeiro, José R., Vapour pressures and the enthalpies and entropies of sublimation of five dicarboxylic acids, The Journal of Chemical Thermodynamics, 1999, 31, 8, 1093-1107, https://doi.org/10.1006/jcht.1999.0522 . [all data]

Davies and Thomas, 1960
Davies, M.; Thomas, G.H., The lattice energies, infra-red spectra, and possible cyclization of some dicarboxylic acids, Trans. Faraday Soc., 1960, 56, 185. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Taulelle, Sitja, et al., 2009
Taulelle, Pascal; Sitja, Georges; Pepe, Gerard; Garcia, Eric; Hoff, Christian; Veesler, Stephane, Measuring Enthalpy of Sublimation for Active Pharmaceutical Ingredients: Validate Crystal Energy and Predict Crystal Habit, Crystal Growth & Design, 2009, 9, 11, 4706-4709, https://doi.org/10.1021/cg900567z . [all data]

Cappa, Lovejoy, et al., 2007
Cappa, Christopher D.; Lovejoy, Edward R.; Ravishankara, A.R., Determination of Evaporation Rates and Vapor Pressures of Very Low Volatility Compounds: A Study of the C 4 -C 10 and C 12 Dicarboxylic Acids, J. Phys. Chem. A, 2007, 111, 16, 3099-3109, https://doi.org/10.1021/jp068686q . [all data]

Chattopadhyay and Ziemann, 2005
Chattopadhyay, Sulekha; Ziemann, Paul J., Vapor Pressures of Substituted and Unsubstituted Monocarboxylic and Dicarboxylic Acids Measured Using an Improved Thermal Desorption Particle Beam Mass Spectrometry Method, Aerosol Science and Technology, 2005, 39, 11, 1085-1100, https://doi.org/10.1080/02786820500421547 . [all data]

Chattopadhyay, Tobias, et al., 2001
Chattopadhyay, Sulekha; Tobias, Herbert J.; Ziemann, Paul J., A Method for Measuring Vapor Pressures of Low-Volatility Organic Aerosol Compounds Using a Thermal Desorption Particle Beam Mass Spectrometer, Anal. Chem., 2001, 73, 16, 3797-3803, https://doi.org/10.1021/ac010304j . [all data]

Nitta, Seki, et al., 1950
Nitta, I.; Seki, S.; Momotani, M.; Suzuki, K.; Nakagawa, S., On the phase transition in pentaerythritol (II)., Proc. Jpn. Acad., 1950, 26, 11. [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press Inc., London, 1970, 643. [all data]

Cingolani and Berchiesi, 1974
Cingolani, A.; Berchiesi, G., Thermodynamic properties of organic compounds. 1. A DSC study of phase transitions in aliphatic dicarboxylic acids, J. Therm. Anal., 1974, 6, 87-90. [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, References