Xenon

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar169.685 ± 0.003J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar169.68J/mol*KReviewChase, 1998Data last reviewed in March, 1982

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 6000.
A 20.78600
B 7.449320×10-7
C -2.049401×10-7
D 1.066661×10-8
E 2.500261×10-8
F -6.197350
G 194.8380
H 0.000000
ReferenceChase, 1998
Comment Data last reviewed in March, 1982

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director

Quantity Value Units Method Reference Comment
Tboil165.02KN/AZiegler, Mullins, et al., 1966Uncertainty assigned by TRC = 0.05 K; TRC
Quantity Value Units Method Reference Comment
Ttriple161.38KN/AKemp, Kemp, et al., 1985Uncertainty assigned by TRC = 0.02 K; studied as possible fixed point for IPTS-68; TRC
Ttriple161.37KN/AZiegler, Mullins, et al., 1966Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple161.4KN/ALahr and Eversole, 1962Uncertainty assigned by TRC = 0.3 K; TRC
Ttriple161.36KN/AClusius and Weigand, 1940Uncertainty assigned by TRC = 0.2 K; See property X for dP/dT for c-l equil.; TRC
Quantity Value Units Method Reference Comment
Ptriple0.81600barN/AFonseca and Lobo, 1989Uncertainty assigned by TRC = 0.0001 bar; TRC
Ptriple0.6166barN/ACalado, Rebelo, et al., 1986Uncertainty assigned by TRC = 0.00007 bar; TRC
Ptriple0.8165barN/AZiegler, Mullins, et al., 1966Uncertainty assigned by TRC = 0.0019 bar; TRC
Quantity Value Units Method Reference Comment
Tc289.74KN/ATheeuwes and Bearman, 1970Uncertainty assigned by TRC = 0.02 K; PVT, values chosen concordant with vapour pressures measured up to 284 K; TRC
Quantity Value Units Method Reference Comment
ρc8.371mol/lN/ATheeuwes and Bearman, 1970Uncertainty assigned by TRC = 0.00830 mol/l; PVT, values chosen concordant with vapour pressures measured up to 284 K; TRC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
161.43 to 162.632.83881326.595-49.796Chen, Lim, et al., 1975Coefficents calculated by NIST from author's data.
161.70 to 184.703.80675577.661-13.0Michels and Wassenaar, 1950Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
MS - José A. Martinho Simões
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

(Xe+ • Xenon) + Xenon = (Xe+ • 2Xenon)

By formula: (Xe+ • Xe) + Xe = (Xe+ • 2Xe)

Quantity Value Units Method Reference Comment
Δr28.kJ/molDTHelm, 1976gas phase; corrected for ln T by Keesee and Castleman, 1986; M
Δr28.2kJ/molDTHelm, 1976gas phase; corrected for ln T by Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KDTHelm, 1976gas phase; corrected for ln T by Keesee and Castleman, 1986; M
Δr78.2J/mol*KDTHelm, 1976gas phase; corrected for ln T by Keesee and Castleman, 1986; M

Chlorine anion + Xenon = (Chlorine anion • Xenon)

By formula: Cl- + Xe = (Cl- • Xe)

Quantity Value Units Method Reference Comment
Δr17.6 ± 1.3kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B
Δr13.0kJ/molMoblGatland, 1984gas phase; B,M
Δr13.0kJ/molMoblThackston, Eisele, et al., 1980gas phase; B,M
Δr<13.4kJ/molMoblDe Vreugd, Wijnaendts van Resandt, et al., 1979gas phase; B
Quantity Value Units Method Reference Comment
Δr-6.1 ± 1.3kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B

Bromine anion + Xenon = (Bromine anion • Xenon)

By formula: Br- + Xe = (Br- • Xe)

Quantity Value Units Method Reference Comment
Δr15.1 ± 1.3kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B
Δr12.1 ± 0.42kJ/molLPESYourshaw, Lenzer, et al., 1998gas phase; Given: 0.12692(.0005) eV; B
Δr14.2kJ/molMoblGatland, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr-4.9 ± 1.3kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B

Cesium ion (1+) + Xenon = (Cesium ion (1+) • Xenon)

By formula: Cs+ + Xe = (Cs+ • Xe)

Quantity Value Units Method Reference Comment
Δr10.5kJ/molIMobGatland, 1984, 2gas phase; M
Δr11.5kJ/molSCATTERINGGislason, 1984gas phase; M
Δr11.0kJ/molIMobViehland, 1984gas phase; M
Δr10.2kJ/molIMobMason and Sharp, 1958gas phase; M
Δr14.9kJ/molIMobTakebe, 1983gas phase; values from this source are too high; M

Methyl cation + Xenon = (Methyl cation • Xenon)

By formula: CH3+ + Xe = (CH3+ • Xe)

Quantity Value Units Method Reference Comment
Δr213.kJ/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 202. kJ/mol; Foster, Williamson, et al., 1974; M
Δr231. ± 10.kJ/molICRHovey and McMahon, 1986gas phase; switching reaction(CH3+)CH3F, Entropy change calculated or estimated; M

Fluorine anion + Xenon = (Fluorine anion • Xenon)

By formula: F- + Xe = (F- • Xe)

Quantity Value Units Method Reference Comment
Δr26.4 ± 1.3kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B
Δr27.2 ± 3.8kJ/molMoblDe Vreugd, Wijnaendts van Resandt, et al., 1979gas phase; B
Δr27.kJ/molSCATTERINGDe Vrengd, Wijnaendts van Resandt, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr6.4 ± 1.3kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B

Iodide + Xenon = IXe-

By formula: I- + Xe = IXe-

Quantity Value Units Method Reference Comment
Δr6.69kJ/molN/ALenzer, Furlanetto, et al., 1998gas phase; B
Δr11.7kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; Entropy estimated; B
Quantity Value Units Method Reference Comment
Δr-8.24kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; Entropy estimated; B

Xe+ + Xenon = (Xe+ • Xenon)

By formula: Xe+ + Xe = (Xe+ • Xe)

Quantity Value Units Method Reference Comment
Δr99.6kJ/molPINg, Trevor, et al., 1976gas phase; M
Δr95.4kJ/molSCATTERINGMittman and Weise, 1974gas phase; M
Δr93.7kJ/molSCATTERINGLorentz, Olson, et al., 1973gas phase; M
Δr95.4kJ/molPISamson, 1966gas phase; M

Potassium ion (1+) + Xenon = (Potassium ion (1+) • Xenon)

By formula: K+ + Xe = (K+ • Xe)

Quantity Value Units Method Reference Comment
Δr18.0kJ/molIMobGatland, 1984, 2gas phase; M
Δr15.8kJ/molSCATTERINGGislason, 1984gas phase; M
Δr20.3kJ/molIMobViehland, 1984gas phase; M
Δr22.3kJ/molIMobTakebe, 1983gas phase; M

C5O5WXe (solution) = C5O5W (solution) + Xenon (solution)

By formula: C5O5WXe (solution) = C5O5W (solution) + Xe (solution)

Quantity Value Units Method Reference Comment
Δr35.1 ± 0.8kJ/molKinSWeiller, 1992solvent: Liquid Xenon; Temperature range: 173-198 K; MS

C5MoO5Xe (g) = C5MoO5 (g) + Xenon (g)

By formula: C5MoO5Xe (g) = C5MoO5 (g) + Xe (g)

Quantity Value Units Method Reference Comment
Δr33.5 ± 4.2kJ/molKinGWells and Weitz, 1992The reaction enthalpy relies on 31.0 ± 4.2 kJ/mol for the activation energy and on the assumption of a negligible barrier for product recombination Wells and Weitz, 1992; MS

C5O5WXe (g) = C5O5W (g) + Xenon (g)

By formula: C5O5WXe (g) = C5O5W (g) + Xe (g)

Quantity Value Units Method Reference Comment
Δr34.3 ± 4.2kJ/molKinGWells and Weitz, 1992The reaction enthalpy relies on 31.8 ± 4.2 kJ/mol for the activation energy and on the assumption of a negligible barrier for product recombination Wells and Weitz, 1992; MS

C5CrO5Xe (g) = C5CrO5 (g) + Xenon (g)

By formula: C5CrO5Xe (g) = C5CrO5 (g) + Xe (g)

Quantity Value Units Method Reference Comment
Δr37.7 ± 3.8kJ/molKinGWells and Weitz, 1992The reaction enthalpy relies on 35.1 ± 3.8 kJ/mol for the activation energy and assumes a negligible barrier for product recombination Wells and Weitz, 1992; MS

Lithium ion (1+) + Xenon = (Lithium ion (1+) • Xenon)

By formula: Li+ + Xe = (Li+ • Xe)

Quantity Value Units Method Reference Comment
Δr51.5kJ/molSCATTERINGGislason, 1984gas phase; M
Δr52.7kJ/molIMobViehland, 1984gas phase; M
Δr87.0kJ/molIMobTakebe, 1983gas phase; M

Sodium ion (1+) + Xenon = (Sodium ion (1+) • Xenon)

By formula: Na+ + Xe = (Na+ • Xe)

Quantity Value Units Method Reference Comment
Δr25.0kJ/molSCATTERINGGislason, 1984gas phase; M
Δr24.9kJ/molIMobViehland, 1984gas phase; M
Δr39.8kJ/molIMobTakebe, 1983gas phase; M

Rubidium ion (1+) + Xenon = (Rubidium ion (1+) • Xenon)

By formula: Rb+ + Xe = (Rb+ • Xe)

Quantity Value Units Method Reference Comment
Δr11.9kJ/molIMobGatland, 1984, 2gas phase; M
Δr17.8kJ/molIMobViehland, 1984gas phase; M
Δr15.1kJ/molIMobTakebe, 1983gas phase; M

(Xe+ • 2Xenon) + Xenon = (Xe+ • 3Xenon)

By formula: (Xe+ • 2Xe) + Xe = (Xe+ • 3Xe)

Quantity Value Units Method Reference Comment
Δr25.2 ± 0.63kJ/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr63.2J/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

(Xe+ • 3Xenon) + Xenon = (Xe+ • 4Xenon)

By formula: (Xe+ • 3Xe) + Xe = (Xe+ • 4Xe)

Quantity Value Units Method Reference Comment
Δr11.0 ± 0.63kJ/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr54.8J/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

ClXe- + 2Xenon = ClXe2-

By formula: ClXe- + 2Xe = ClXe2-

Quantity Value Units Method Reference Comment
Δr15.5 ± 1.7kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B
Quantity Value Units Method Reference Comment
Δr-9.5 ± 1.7kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B

FXe2- + 3Xenon = FXe3-

By formula: FXe2- + 3Xe = FXe3-

Quantity Value Units Method Reference Comment
Δr20.9 ± 1.7kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B
Quantity Value Units Method Reference Comment
Δr-2.8 ± 1.7kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B

FXe- + 2Xenon = FXe2-

By formula: FXe- + 2Xe = FXe2-

Quantity Value Units Method Reference Comment
Δr21.8 ± 1.3kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B
Quantity Value Units Method Reference Comment
Δr0.5 ± 1.3kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B

Nitric oxide anion + Xenon = (Nitric oxide anion • Xenon)

By formula: NO- + Xe = (NO- • Xe)

Quantity Value Units Method Reference Comment
Δr16.3 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr17.2 ± 2.5kJ/molN/ABowen and Eaton, 1988gas phase; B

IXe9- + 10Xenon = IXe10-

By formula: IXe9- + 10Xe = IXe10-

Quantity Value Units Method Reference Comment
Δr5.0 ± 3.8kJ/molN/ABecker, Markovich, et al., 1997gas phase; Stated electron affinity is the Vertical Detachment Energy; B

IXe10- + 11Xenon = IXe11-

By formula: IXe10- + 11Xe = IXe11-

Quantity Value Units Method Reference Comment
Δr3.8 ± 3.8kJ/molN/ABecker, Markovich, et al., 1997gas phase; Stated electron affinity is the Vertical Detachment Energy; B

IXe11- + 12Xenon = IXe12-

By formula: IXe11- + 12Xe = IXe12-

Quantity Value Units Method Reference Comment
Δr3.8 ± 3.8kJ/molN/ABecker, Markovich, et al., 1997gas phase; Stated electron affinity is the Vertical Detachment Energy; B

IXe- + 2Xenon = IXe2-

By formula: IXe- + 2Xe = IXe2-

Quantity Value Units Method Reference Comment
Δr8.8 ± 2.1kJ/molN/ABecker, Markovich, et al., 1997gas phase; Stated electron affinity is the Vertical Detachment Energy; B

IXe2- + 3Xenon = IXe3-

By formula: IXe2- + 3Xe = IXe3-

Quantity Value Units Method Reference Comment
Δr6.7 ± 3.8kJ/molN/ABecker, Markovich, et al., 1997gas phase; Stated electron affinity is the Vertical Detachment Energy; B

IXe3- + 4Xenon = IXe4-

By formula: IXe3- + 4Xe = IXe4-

Quantity Value Units Method Reference Comment
Δr5.9 ± 3.8kJ/molN/ABecker, Markovich, et al., 1997gas phase; Stated electron affinity is the Vertical Detachment Energy; B

IXe4- + 5Xenon = IXe5-

By formula: IXe4- + 5Xe = IXe5-

Quantity Value Units Method Reference Comment
Δr5.9 ± 3.8kJ/molN/ABecker, Markovich, et al., 1997gas phase; Stated electron affinity is the Vertical Detachment Energy; B

IXe5- + 6Xenon = IXe6-

By formula: IXe5- + 6Xe = IXe6-

Quantity Value Units Method Reference Comment
Δr5.0 ± 3.8kJ/molN/ABecker, Markovich, et al., 1997gas phase; Stated electron affinity is the Vertical Detachment Energy; B

IXe6- + 7Xenon = IXe7-

By formula: IXe6- + 7Xe = IXe7-

Quantity Value Units Method Reference Comment
Δr5.0 ± 3.8kJ/molN/ABecker, Markovich, et al., 1997gas phase; Stated electron affinity is the Vertical Detachment Energy; B

IXe7- + 8Xenon = IXe8-

By formula: IXe7- + 8Xe = IXe8-

Quantity Value Units Method Reference Comment
Δr5.0 ± 3.8kJ/molN/ABecker, Markovich, et al., 1997gas phase; Stated electron affinity is the Vertical Detachment Energy; B

IXe8- + 9Xenon = IXe9-

By formula: IXe8- + 9Xe = IXe9-

Quantity Value Units Method Reference Comment
Δr3.8 ± 3.8kJ/molN/ABecker, Markovich, et al., 1997gas phase; Stated electron affinity is the Vertical Detachment Energy; B

Vanadium ion (1+) + Xenon = (Vanadium ion (1+) • Xenon)

By formula: V+ + Xe = (V+ • Xe)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
33. (+5.9,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M

Iron ion (1+) + Xenon = (Iron ion (1+) • Xenon)

By formula: Fe+ + Xe = (Fe+ • Xe)

Quantity Value Units Method Reference Comment
Δr41.8 ± 5.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Magnesium ion (1+) + Xenon = (Magnesium ion (1+) • Xenon)

By formula: Mg+ + Xe = (Mg+ • Xe)

Quantity Value Units Method Reference Comment
Δr31. ± 12.kJ/molCIDTAndersen, Muntean, et al., 2000RCD

NOXe- + 2Xenon = NOXe2-

By formula: NOXe- + 2Xe = NOXe2-

Quantity Value Units Method Reference Comment
Δr16.3kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

NOXe2- + 3Xenon = NOXe3-

By formula: NOXe2- + 3Xe = NOXe3-

Quantity Value Units Method Reference Comment
Δr14.6kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

NOXe3- + 4Xenon = NOXe4-

By formula: NOXe3- + 4Xe = NOXe4-

Quantity Value Units Method Reference Comment
Δr1.3kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
0.00432200.LN/A
0.00431900.MN/A

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Ziegler, Mullins, et al., 1966
Ziegler, W.T.; Mullins, J.C.; Berquist, A.R., Calculation of the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids below One Atmosphere Pressure. VIII. Xenon, Ga. Inst. Technol., Eng. Exp. Stn., Proj. A-764, Tech. Rep. No. 3, 1966. [all data]

Kemp, Kemp, et al., 1985
Kemp, R.C.; Kemp, W.R.G.; Smart, P.W., The triple point of xenon as a possible defining point on an international temperature scale, Metrologia, 1985, 21, 43. [all data]

Lahr and Eversole, 1962
Lahr, P.H.; Eversole, W.G., Compression Isotherms of Argon, Krypton, and Xenon Through the Freezing Zone, J. Chem. Eng. Data, 1962, 7, 42-47. [all data]

Clusius and Weigand, 1940
Clusius, K.; Weigand, K., Melting Curves of the Gases A, Kr, Xe, CH4, CH3D, CD4, C2H4, C2H6, COS, and PH3 to 200 Atmospheres Pressure. The Chane of Volume on Melting, Z. Phys. Chem., Abt. B, 1940, 46, 1-37. [all data]

Fonseca and Lobo, 1989
Fonseca, I.M.A.; Lobo, L.Q., Thermodynamics of liquid mixtures of xenon and methyl fluoride, Fluid Phase Equilib., 1989, 47, 249. [all data]

Calado, Rebelo, et al., 1986
Calado, J.C.G.; Rebelo, L.P.N.; Streett, W.B.; Zollweg, J.A., Thermodynamics of liquid (dimethylether + xenon), J. Chem. Thermodyn., 1986, 18, 931. [all data]

Theeuwes and Bearman, 1970
Theeuwes, F.; Bearman, R.J., The p,V,T behavior of dense fluids V. The vapor pressure and saturated liquid density of xenon, J. Chem. Thermodyn., 1970, 2, 507-12. [all data]

Chen, Lim, et al., 1975
Chen, H.H.; Lim, C.C.; Aziz, R.A., The Enthalpy of Vaporization and Internal Energy of Liquid Argon, Krypton, and Xenon Determined from Vapor Pressures, J. Chem. Thermodyn., 1975, 7, 2, 191-199, https://doi.org/10.1016/0021-9614(75)90268-2 . [all data]

Michels and Wassenaar, 1950
Michels, A.; Wassenaar, T., Vapour Pressure of Liquid Xenon, Physica (Amsterdam), 1950, 16, 3, 253-256, https://doi.org/10.1016/0031-8914(50)90023-1 . [all data]

Helm, 1976
Helm, H., Formation of Xe3+ Ions in Xenon at Temperatures Between 210 and 293 K, Phys. Rev. A, 1976, 14, 2, 680, https://doi.org/10.1103/PhysRevA.14.680 . [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Wada, Kikkawa, et al., 2007
Wada, A.; Kikkawa, A.; Sugiyama, T.; Hiraoka, K., Thermochemical Stabilities of the Gas-phase Cluster Ions of Halide Ions with Rare Gas Atoms, Int. J. Mass Spectrom.., 2007, 267, 1-3, 284-287, https://doi.org/10.1016/j.ijms.2007.02.053 . [all data]

Gatland, 1984
Gatland, I.R., Determination of Ion-Atom Potentials from Mobility Experiments. in Swarms of Ions and Electrons In Gases, W. Lindinger, Ed., Springer-Verlag, NY,, 1984, 44. [all data]

Thackston, Eisele, et al., 1980
Thackston, M.G.; Eisele, F.L.; Pope, W.M.; Ellis, H.W.; McDaniel, E.W.; Gatland, I.R., Mobility of Cl- ions in Xe gas and the Cl--Xe interaction potential, J. Chem. Phys., 1980, 73, 3183. [all data]

De Vreugd, Wijnaendts van Resandt, et al., 1979
De Vreugd, C.; Wijnaendts van Resandt, R.W.; Los, J., The Well Depths of XeF- and XeCl- from Differential Scattering Measurements, Chem. Phys. Lett., 1979, 65, 1, 93, https://doi.org/10.1016/0009-2614(79)80134-7 . [all data]

Yourshaw, Lenzer, et al., 1998
Yourshaw, I.; Lenzer, T.; Reiser, G.; Neumark, D.M., Zero electron kinetic energy spectroscopy of the KrBr-, XeBr-, and KrCl- anions, J. Chem. Phys., 1998, 109, 13, 5247-5256, https://doi.org/10.1063/1.477141 . [all data]

Gatland, 1984, 2
Gatland, I.R., Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Gislason, 1984
Gislason, E.A., Quoted in I. R. Gatland in Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Viehland, 1984
Viehland, L.A., Interaction Potentials for Li+ - Rare - Gas Systems, Chem. Phys., 1984, 78, 2, 279, https://doi.org/10.1016/0301-0104(83)85114-3 . [all data]

Mason and Sharp, 1958
Mason, E.A.; Sharp, H.W., Mobility of gaseous lons in weak electric fields, Ann. Phys., 1958, 4, 3, 233, https://doi.org/10.1016/0003-4916(58)90049-6 . [all data]

Takebe, 1983
Takebe, M., The Generalized Mobility Curve for Alkali Ions in Rare Gases: Clustering Reactions and Mobility Curves, J. Chem. Phys., 1983, 78, 12, 7223, https://doi.org/10.1063/1.444763 . [all data]

McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P., Methyl Cation Affinities, J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002 . [all data]

Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L., Photoionization mass spectrometry of trans-azomethane, Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]

Hovey and McMahon, 1986
Hovey, J.K.; McMahon, T.B., C-Xe Bond strength in the methylxenonium cation determined from ion cyclotron resonance methyl cation exchange equilibria, J. Am. Chem. Soc., 1986, 108, 528. [all data]

De Vrengd, Wijnaendts van Resandt, et al., 1979
De Vrengd, C.; Wijnaendts van Resandt, R.W.; Los, J., The well depths of XeF- and XeCl- from differential scattering measurements, Chem. Phys. Lett., 1979, 65, 93. [all data]

Lenzer, Furlanetto, et al., 1998
Lenzer, T.; Furlanetto, M.R.; Asmis, K.R.; Neumark, D.M., Zero electron kinetic energy and photoelectron spectroscopy of the XeI- anion, J. Chem. Phys., 1998, 109, 24, 10754-10766, https://doi.org/10.1063/1.477774 . [all data]

Ng, Trevor, et al., 1976
Ng, C.Y.; Trevor, D.J.; Mahan, B.H.; Lee, Y.T., Photoionization Study of the Xe2 van der Waals Molecule, J. Chem. Phys., 1976, 65, 10, 4327, https://doi.org/10.1063/1.432849 . [all data]

Mittman and Weise, 1974
Mittman, H.U.; Weise, H.P., Scattering of Ions V. Elastic Scattering of the Symmetric Rare Gas Ion - Rare Gas Atom Systems, Z. Naturforsch., 1974, A29, 400. [all data]

Lorentz, Olson, et al., 1973
Lorentz, D.C.; Olson, R.E.; Conklin, G.M., Rainbow Scattering for Ar+ + Ar and Xe+ + Xe, Chem. Phys. Lett., 1973, 20, 6, 589, https://doi.org/10.1016/0009-2614(73)80508-1 . [all data]

Samson, 1966
Samson, J.A.R., Ionization Potential of Molecular Xenon and Krypton, J. Opt. Soc. Am., 1966, 56, 8, 1140, https://doi.org/10.1364/JOSA.56.001140 . [all data]

Weiller, 1992
Weiller, B.H., J. Am. Chem. Soc., 1992, 114, 10910. [all data]

Wells and Weitz, 1992
Wells, J.R.; Weitz, E., J. Am. Chem. Soc., 1992, 114, 2783. [all data]

Hiraoka and Mori, 1990
Hiraoka, K.; Mori, T., Stability of Rare - Gas Cluster Ions, J. Chem. Phys., 1990, 92, 7, 4408, https://doi.org/10.1063/1.457751 . [all data]

Hendricks, de Clercq, et al., 2002
Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S., Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2), J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444 . [all data]

Bowen and Eaton, 1988
Bowen, K.H.; Eaton, J.G., Photodetachment Spectroscopy of Negative Cluster Ions, in The Structure of Small Molecules and Ions, Ed. R. Naaman, Z. Vager, Plenum NY, 1988, 1988, p.147-169. [all data]

Becker, Markovich, et al., 1997
Becker, I.; Markovich, G.; Chesnovsky, O., Bound Delocalized Excited States in I-Xen Clusters., Phys. Rev. Lett., 1997, 79, 18, 3391, https://doi.org/10.1103/PhysRevLett.79.3391 . [all data]

Sievers and Armentrout, 1995
Sievers, M.R.; Armentrout, P.B., Collision-Induced Dissociation Studies of V(CO)x+, x = 1-7: Sequential Bond Energies and the Heat of Formation of V(CO)6, J. Phys. Chem., 1995, 99, 20, 8135, https://doi.org/10.1021/j100020a041 . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Andersen, Muntean, et al., 2000
Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P.B., Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6, J. Phys. Chem. A, 2000, 104, 4, 692, https://doi.org/10.1021/jp993031t . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References