Ethanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-234. ± 2.kJ/molAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Δcgas-1366.3 ± 0.4kJ/molCmRossini, 1932Flame Calorimetry; Corresponding Δfgas = -278.20 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
37.1250.Thermodynamics Research Center, 1997p=1 bar. Recommended entropies and heat capacities are in close agreement with other statistically calculated values [ Zhuravlev E.Z., 1959, Chermin H.A.G., 1961, Green J.H.S., 1961, Green J.H.S., 1961, 2, Chao J., 1986, Gurvich, Veyts, et al., 1989]. Please also see Chao J., 1986, 2.; GT
41.70100.
46.94150.
52.02200.
61.46273.15
65.21 ± 0.14298.15
65.49300.
81.22400.
95.78500.
108.24600.
118.83700.
127.92800.
135.81900.
142.681000.
148.681100.
153.921200.
158.491300.
162.501400.
166.011500.
173.01750.
178.22000.
182.02250.
184.92500.
187.2750.
189.3000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
51.38 ± 0.50200.Stromsoe E., 1970Experimental data [ Bennewitz K., 1938, Eucken A., 1948, Barrow G.M., 1952, Sinke G.C., 1953, Halford J.O., 1957] are collected in ref. [ Green J.H.S., 1961]. Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.09 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Green J.H.S., 1961, Counsell J.F., 1970.; GT
62.30 ± 0.54279.
62.09 ± 0.42280.
73.15350.01
75.7 ± 1.1356.55
74.57360.00
76.4 ± 1.1361.75
75.52367.9
76.00370.01
77.7 ± 1.1371.85
77.46380.00
79.8 ± 1.1387.25
80.0 ± 1.1388.85
80.40400.08
82.01410.16
83.39422.
84.10425.09
85.9 ± 1.1433.25
87.99437.
87.3 ± 1.1443.35
87.65450.08
91.11475.12
91.21476.
92.2 ± 1.1480.45
99.4 ± 1.1534.35
101.3 ± 1.1548.75
104.5 ± 1.1572.25
107.0 ± 1.1591.25

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-276. ± 2.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δcliquid-1367.6 ± 0.3kJ/molCcbChao and Rossini, 1965see Rossini, 1934; Corresponding Δfliquid = -276.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1367.0 ± 0.42kJ/molCcbGreen, 1960Corresponding Δfliquid = -277.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1370.9kJ/molCcbParks, 1925Corresponding Δfliquid = -273.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1368.34kJ/molCcbRichards and Davis, 1920At 291 K; Corresponding Δfliquid = -276.17 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1368.6kJ/molCcbEmery and Benedict, 1911Corresponding Δfliquid = -275.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid159.86J/mol*KN/AHaida, Suga, et al., 1977DH
liquid161.21J/mol*KN/AGreen J.H.S., 1961DH
liquid160.7J/mol*KN/AKelley, 1929DH
liquid177.0J/mol*KN/AParks, 1925Extrapolation below 90 K, 55.19 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
112.4298.15Petrov, Peshekhodov, et al., 1989T = 258.15, 278.15, 298.15, 318.15 K.; DH
111.53298.15Andreoli-Ball, Patterson, et al., 1988DH
112.36298.15Ogawa and Murakami, 1986DH
112.68298.15Tanaka, Toyama, et al., 1986DH
110.51298.15Ogawa and Murakami, 1985DH
115.9298.15Stephens and Olson, 1984T = 266 to 318 K. Cp given as 0.6011 cal/g*K.; DH
112.67298.15Zegers and Somsen, 1984DH
108.07288.15Benson and D'Arcy, 1982DH
113.75298.15Villamanan, Casanova, et al., 1982DH
112.15298.15Brown and Ziegler, 1979T = 159 to 306 K. Results as equation only.; DH
112.30298.15Vesely, Zabransky, et al., 1979DH
112.5298.15Haida, Suga, et al., 1977T = 14 to 300 K. Also glass, supercooled liquid, metastable crystal.; DH
112.30298.15Vesely, Svoboda, et al., 1977T = 298 to 318 K.; DH
112.33298.15Fortier, Benson, et al., 1976DH
112.094298.15Fortier and Benson, 1976DH
111.81298.15Pedersen, Kay, et al., 1975T = 298 to 348 K. Cp(liq) = 98.39 + 0.5368(T/K-273.25) J/mol*K (298 to 348 K).; DH
118.4313.2Paz Andrade, Paz, et al., 1970DH
97.53250.Nikolaev, Rabinovich, et al., 1967T = 80 to 250 K.; DH
112.056297.359Hwa and Ziegler, 1966T = 165 to 304 K. Unsmoothed experimental datum.; DH
112.26298.Rabinovich and Nikolaev, 1962T = 15 to 55°C.; DH
111.96298.15Green J.H.S., 1961T = 16 to 350 K.; DH
118.8316.Swietoslawski and Zielenkiewicz, 1960Mean value 21 to 66°C.; DH
114.7297.8Mazur, 1940T = 174 to 298 K. Unsmoothed experimental datum. Cp(liq) = 0.5437 + 0.001858t + 0.0000098t2 cal/g*K. Cp(298.15 K) = 114.9 J/mol*K, calculated from equation.; DH
111.7298.Bykov, 1939DH
103.3298.Ernst, Watkins, et al., 1936DH
118.72313.15Fiock, Ginnings, et al., 1931T = 40 to 110°C.; DH
109.87294.31Kelley, 1929T = 16 to 298 K. Value is unsmoothed experimental datum.; DH
106.3270.Mitsukuri and Hara, 1929T = 190 to 270 K.; DH
160.7298.1Parks, Kelley, et al., 1929Extrapolation below 90 K, 38.9 J/mol*K. Revision of previous data.; DH
113.4298.0Parks, 1925T = 87 to 298 K. Value is unsmoothed experimental datum.; DH
115.1303.Willams and Daniels, 1924T = 303 to 333 K. Equation only.; DH
102.4271.4Gibson, Parks, et al., 1920T = 85 to 271.4 K. Unsmoothed experimental datum. Data also given for the glassy state from 85.9 to 96.3 K.; DH
112.1298.von Reis, 1881T = 288 to 346 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil351.5 ± 0.2KAVGN/AAverage of 138 out of 148 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus159. ± 2.KAVGN/AAverage of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple150. ± 20.KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Tc514. ± 7.KAVGN/AAverage of 37 out of 38 values; Individual data points
Quantity Value Units Method Reference Comment
Pc63. ± 4.barAVGN/AAverage of 18 out of 19 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.168l/molN/AGude and Teja, 1995 
Quantity Value Units Method Reference Comment
ρc6.0 ± 0.2mol/lAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap42.3 ± 0.4kJ/molAVGN/AAverage of 12 out of 13 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
38.56351.5N/AMajer and Svoboda, 1985 
41.7326.N/AMejia, Segura, et al., 2010Based on data from 311. to 351. K.; AC
39.3338.N/AAucejo, Loras, et al., 1999Based on data from 323. to 357. K.; AC
40.7321.EBDiogo, Santos, et al., 1995Based on data from 309. to 343. K.; AC
40.5357.N/AOrtega, Susial, et al., 1990Based on data from 342. to 357. K.; AC
35.2393.CVine and Wormald, 1989AC
30.6423.CVine and Wormald, 1989AC
25.7453.CVine and Wormald, 1989AC
21.8473.CVine and Wormald, 1989AC
17.3493.CVine and Wormald, 1989AC
14.2503.CVine and Wormald, 1989AC
40.9320.CDong, Lin, et al., 1988AC
40.4328.CDong, Lin, et al., 1988AC
40.2335.CDong, Lin, et al., 1988AC
39.4344.CDong, Lin, et al., 1988AC
38.8351.CDong, Lin, et al., 1988AC
41.3335.AStephenson and Malanowski, 1987Based on data from 320. to 359. K.; AC
45.6256.AStephenson and Malanowski, 1987Based on data from 210. to 271. K.; AC
44.208.AStephenson and Malanowski, 1987Based on data from 193. to 223. K.; AC
41.3335.AStephenson and Malanowski, 1987Based on data from 320. to 359. K.; AC
40.1361.AStephenson and Malanowski, 1987Based on data from 349. to 374. K.; AC
39.1385.AStephenson and Malanowski, 1987Based on data from 370. to 464. K.; AC
36.1474.AStephenson and Malanowski, 1987Based on data from 459. to 514. K.; AC
42.5307.AStephenson and Malanowski, 1987Based on data from 292. to 353. K.; AC
42.5308.A,EBStephenson and Malanowski, 1987Based on data from 293. to 366. K. See also Ambrose, Counsell, et al., 1970.; AC
42.9286.N/AWilhoit and Zwolinski, 1973Based on data from 271. to 373. K.; AC
41.0 ± 0.1320.CCounsell, Fenwick, et al., 1970AC
40.0 ± 0.1335.CCounsell, Fenwick, et al., 1970AC
38.7 ± 0.1351.CCounsell, Fenwick, et al., 1970AC
42.4303.N/AVan Ness, Soczek, et al., 1967Based on data from 288. to 348. K.; AC
42.2313.N/AKretschmer and Wiebe, 1949Based on data from 298. to 351. K.; AC
40.0351.N/AOguri, Anjo, et al., 1934AC
54.1301.N/AKahlbaum, 1883Based on data from 286. to 351. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 469.
A (kJ/mol) 50.43
α -0.4475
β 0.4989
Tc (K) 513.9
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
364.8 to 513.914.925311432.526-61.819Ambrose, Sprake, et al., 1975Coefficents calculated by NIST from author's data.
292.77 to 366.635.246771598.673-46.424Ambrose and Sprake, 1970Coefficents calculated by NIST from author's data.
273. to 351.705.372291670.409-40.191Kretschmer and Wiebe, 1949Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
4.973159.Yoshida, 1944DH
5.021158.5Kelley, 1929DH
4.626156.2Gibson, Parks, et al., 1920DH
4.64158.8Domalski and Hearing, 1996AC
4.962158.7Parks, 1925DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
31.3159.Yoshida, 1944DH
31.68158.5Kelley, 1929DH
21.22158.7Parks, 1925DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
28.16111.4Domalski and Hearing, 1996CAL
29.25158.8
5.2127.5
31.0159.

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.659127.5crystaline, IIliquidHaida, Suga, et al., 1977DH
4.931159.00crystaline, IliquidHaida, Suga, et al., 1977DH
3.138111.4crystaline, IIcrystaline, INikolaev, Rabinovich, et al., 1967DH
4.644158.8crystaline, IliquidNikolaev, Rabinovich, et al., 1967DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
5.19127.5crystaline, IIliquidHaida, Suga, et al., 1977DH
31.01159.00crystaline, IliquidHaida, Suga, et al., 1977DH
28.17111.4crystaline, IIcrystaline, INikolaev, Rabinovich, et al., 1967DH
29.24158.8crystaline, IliquidNikolaev, Rabinovich, et al., 1967DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
MS - José A. Martinho Simões
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

C2H7O+ + Ethanol = (C2H7O+ • Ethanol)

By formula: C2H7O+ + C2H6O = (C2H7O+ • C2H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr134.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Δr135.kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr119.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Δr119.J/mol*KN/ABomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr98.3kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Δr99.2kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M

C2H5O- + Ethanol = (C2H5O- • Ethanol)

By formula: C2H5O- + C2H6O = (C2H5O- • C2H6O)

Quantity Value Units Method Reference Comment
Δr115. ± 4.2kJ/molTDEqMeot-Ner and Sieck, 1986gas phase; B,M
Δr118. ± 10.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Quantity Value Units Method Reference Comment
Δr112.J/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; M
Δr123.J/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH; Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr82.0 ± 6.7kJ/molTDEqMeot-Ner and Sieck, 1986gas phase; B
Δr79.5 ± 6.7kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Δr84.1kJ/molICRMcIver, Scott, et al., 1973gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; Meot-Ner (Mautner), 1992; M

C2H5NaO (cr) + 0.5(Sulfuric Acid • 1100Water) (solution) = Ethanol (solution) + 0.5sodium sulphate (solution)

By formula: C2H5NaO (cr) + 0.5(H2O4S • 1100H2O) (solution) = C2H6O (solution) + 0.5Na2O4S (solution)

Quantity Value Units Method Reference Comment
Δr-118.4 ± 3.8kJ/molRSCBlanchard, Joly, et al., 1974solvent: Sulphuric acid aqueous solution; The reaction enthalpy relies on -10.6 kJ/mol for the enthalpy of solution of EtOH(l) and on 9.97±0.04 for the enthalpy of solution of Na2SO4(cr) Blanchard, Joly, et al., 1974. A value of -490.8 ± 5.9 kJ/mol was derived in Blanchard, Joly, et al., 1974 for the enthalpy of formation. However, this value is affected by a calculation error. Also, the authors have not accounted for the acid dilution (this correction could not be made in the present database, due to lack of information). These problems were also noted in the data compilations Tel'noi and Rabinovich, 1980 and Wagman, Evans W.H., et al., 1982, where the values quoted for the enthalpy of formation, which rely on the experimental data reported in Blanchard, Joly, et al., 1974, are -410.0 ± 4.2 kJ/mol and -413.8 kJ/mol, respectively. See also comments in Liebman, Martinho Simões, et al., 1995; MS

Chlorine anion + Ethanol = (Chlorine anion • Ethanol)

By formula: Cl- + C2H6O = (Cl- • C2H6O)

Quantity Value Units Method Reference Comment
Δr74.9 ± 1.7kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr73.6 ± 2.1kJ/molTDAsHiraoka, 1987gas phase; B,B,M
Δr72.4 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr99.2J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Δr96.7J/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Δr44.56kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr43.9 ± 8.4kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B
Δr43.9 ± 8.4kJ/molTDAsHiraoka, 1987gas phase; B
Δr43.5 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
41.8295.ICRRiveros, 1974gas phase; switching reaction(Cl-)CH3OH; Riveros, Breda, et al., 1973; M

C2H5O- + Hydrogen cation = Ethanol

By formula: C2H5O- + H+ = C2H6O

Quantity Value Units Method Reference Comment
Δr1587. ± 4.2kJ/molD-EARamond, Davico, et al., 2000gas phase; B
Δr1582. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1579. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1586.2 ± 0.42kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr1559. ± 4.6kJ/molH-TSRamond, Davico, et al., 2000gas phase; B
Δr1554. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1551. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

C2H5O+ + Ethanol = (C2H5O+ • Ethanol)

By formula: C2H5O+ + C2H6O = (C2H5O+ • C2H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr123.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr109.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr90.8kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C3H9O+ + Ethanol = (C3H9O+ • Ethanol)

By formula: C3H9O+ + C2H6O = (C3H9O+ • C2H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr128.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr92.0kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C4H9O- + Ethanol = (C4H9O- • Ethanol)

By formula: C4H9O- + C2H6O = (C4H9O- • C2H6O)

Quantity Value Units Method Reference Comment
Δr111. ± 12.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr74.9 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M

C3H7O- + Ethanol = (C3H7O- • Ethanol)

By formula: C3H7O- + C2H6O = (C3H7O- • C2H6O)

Quantity Value Units Method Reference Comment
Δr115. ± 12.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr78.2 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M

C3H9O+ + Ethanol = (C3H9O+ • Ethanol)

By formula: C3H9O+ + C2H6O = (C3H9O+ • C2H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr133.kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr118.J/mol*KN/ABomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr98.3kJ/molICRBomse and Beauchamp, 1981gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M

Fluorine anion + Ethanol = (Fluorine anion • Ethanol)

By formula: F- + C2H6O = (F- • C2H6O)

Quantity Value Units Method Reference Comment
Δr135.6 ± 2.9kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr132. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M
Δr136. ± 9.2kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr104.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr103.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr101. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M

CN- + Ethanol = (CN- • Ethanol)

By formula: CN- + C2H6O = (CN- • C2H6O)

Quantity Value Units Method Reference Comment
Δr72.8 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Δr73. ± 15.kJ/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KPHPMSMeot-ner, 1988gas phase; M
Δr103.J/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr44.8 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B
Δr41.8 ± 9.6kJ/molIMRELarson and McMahon, 1987gas phase; B,M

Iodide + Ethanol = (Iodide • Ethanol)

By formula: I- + C2H6O = (I- • C2H6O)

Quantity Value Units Method Reference Comment
Δr54.39 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr50.6 ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr79.1J/mol*KPHPMSCaldwell and Kebarle, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr25.6kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr27. ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B
Δr25. ± 8.4kJ/molIMRETanabe, Morgon, et al., 1996gas phase; Anchored to H2O..I- of Caldwell and Kebarle, 1984; B

C3H9Si+ + Ethanol = (C3H9Si+ • Ethanol)

By formula: C3H9Si+ + C2H6O = (C3H9Si+ • C2H6O)

Quantity Value Units Method Reference Comment
Δr176.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder(CH3)3Si+))H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr127.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder(CH3)3Si+))H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
117.468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder(CH3)3Si+))H2O, Entropy change calculated or estimated; M

HS- + Ethanol = (HS- • Ethanol)

By formula: HS- + C2H6O = (HS- • C2H6O)

Quantity Value Units Method Reference Comment
Δr68.20 ± 0.42kJ/molTDAsSieck and Meot-ner, 1989gas phase; B,M
Δr67.8 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr79.5J/mol*KPHPMSSieck and Meot-ner, 1989gas phase; M
Δr82.8J/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr44.4 ± 1.7kJ/molTDAsSieck and Meot-ner, 1989gas phase; B
Δr43.1 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B

C3H9Sn+ + Ethanol = (C3H9Sn+ • Ethanol)

By formula: C3H9Sn+ + C2H6O = (C3H9Sn+ • C2H6O)

Quantity Value Units Method Reference Comment
Δr146.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr135.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
74.9525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

C5H11O- + Ethanol = (C5H11O- • Ethanol)

By formula: C5H11O- + C2H6O = (C5H11O- • C2H6O)

Quantity Value Units Method Reference Comment
Δr110. ± 12.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr73.6 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B

(Chlorine anion • 2Ethanol) + Ethanol = (Chlorine anion • 3Ethanol)

By formula: (Cl- • 2C2H6O) + C2H6O = (Cl- • 3C2H6O)

Quantity Value Units Method Reference Comment
Δr58.2 ± 2.9kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr53.6 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr108.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr21.6kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr21. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • Ethanol) + Ethanol = (Chlorine anion • 2Ethanol)

By formula: (Cl- • C2H6O) + C2H6O = (Cl- • 2C2H6O)

Quantity Value Units Method Reference Comment
Δr64.02 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr67.4 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr108.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr30.7kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr35. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 9Ethanol) + Ethanol = (Chlorine anion • 10Ethanol)

By formula: (Cl- • 9C2H6O) + C2H6O = (Cl- • 10C2H6O)

Quantity Value Units Method Reference Comment
Δr37. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B,M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AHiraoka and Mizuse, 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr5.9 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B

(Chlorine anion • 8Ethanol) + Ethanol = (Chlorine anion • 9Ethanol)

By formula: (Cl- • 8C2H6O) + C2H6O = (Cl- • 9C2H6O)

Quantity Value Units Method Reference Comment
Δr38. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B,M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AHiraoka and Mizuse, 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr6.3 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B

CH6N+ + Ethanol = (CH6N+ • Ethanol)

By formula: CH6N+ + C2H6O = (CH6N+ • C2H6O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr89.1kJ/molPHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
37.496.PHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

Sodium ion (1+) + Ethanol = (Sodium ion (1+) • Ethanol)

By formula: Na+ + C2H6O = (Na+ • C2H6O)

Quantity Value Units Method Reference Comment
Δr110. ± 5.4kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr102. ± 4.kJ/molCIDTArmentrout and Rodgers, 2000RCD
Δr102. ± 4.kJ/molCIDTRodgers and Armentrout, 1999RCD

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
79.5298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD
0.00.CIDTRodgers and Armentrout, 1999RCD

(Sodium ion (1+) • Ethanol) + Ethanol = (Sodium ion (1+) • 2Ethanol)

By formula: (Na+ • C2H6O) + C2H6O = (Na+ • 2C2H6O)

Quantity Value Units Method Reference Comment
Δr99.2 ± 6.7kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr96.7 ± 4.6kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr99.2 ± 6.7kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr97.5 ± 5.9kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD

C2H5LiO (cr) + 0.5(Sulfuric Acid • 1100Water) (solution) = 0.5Li2O4S (solution) + Ethanol (solution)

By formula: C2H5LiO (cr) + 0.5(H2O4S • 1100H2O) (solution) = 0.5Li2O4S (solution) + C2H6O (solution)

Quantity Value Units Method Reference Comment
Δr-113.6 ± 1.3kJ/molRSCBlanchard, Joly, et al., 1974solvent: Sulphuric acid aqueous solution; The reaction enthalpy relies on -10.6 kJ/mol for the enthalpy of solution of EtOH(l) and on -17.5±0.3 for the enthalpy of solution of Li2SO4(cr) Blanchard, Joly, et al., 1974.; MS

C2H5KO (cr) + 0.5(Sulfuric Acid • 1100Water) (solution) = Ethanol (solution) + 0.5K2O4S (solution)

By formula: C2H5KO (cr) + 0.5(H2O4S • 1100H2O) (solution) = C2H6O (solution) + 0.5K2O4S (solution)

Quantity Value Units Method Reference Comment
Δr-132.3 ± 2.9kJ/molRSCBlanchard, Joly, et al., 1974solvent: Sulphuric acid aqueous solution; The reaction enthalpy relies on -10.6 kJ/mol for the enthalpy of solution of EtOH(l) and on 35.1±0.1 for the enthalpy of solution of K2SO4(cr) Blanchard, Joly, et al., 1974.; MS

Bromine anion + Ethanol = C2H6BrO-

By formula: Br- + C2H6O = C2H6BrO-

Quantity Value Units Method Reference Comment
Δr58.99 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr34.3kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr37. ± 8.4kJ/molIMRETanabe, Morgon, et al., 1996gas phase; Anchored to H2O..Br- of Hiraoka, Mizure, et al., 19882; B

Hydrogen + Acetaldehyde = Ethanol

By formula: H2 + C2H4O = C2H6O

Quantity Value Units Method Reference Comment
Δr-81.3 ± 1.4kJ/molChydWiberg, Crocker, et al., 1991liquid phase; solvent: Triglyme; ALS
Δr-69.08 ± 0.42kJ/molChydDolliver, Gresham, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -70.1 ± 0.4 kJ/mol; At 355 °K; ALS

(Chlorine anion • 3Ethanol) + Ethanol = (Chlorine anion • 4Ethanol)

By formula: (Cl- • 3C2H6O) + C2H6O = (Cl- • 4C2H6O)

Quantity Value Units Method Reference Comment
Δr50.2 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr13. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 4Ethanol) + Ethanol = (Chlorine anion • 5Ethanol)

By formula: (Cl- • 4C2H6O) + C2H6O = (Cl- • 5C2H6O)

Quantity Value Units Method Reference Comment
Δr48.1 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr128.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr9.6 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 5Ethanol) + Ethanol = (Chlorine anion • 6Ethanol)

By formula: (Cl- • 5C2H6O) + C2H6O = (Cl- • 6C2H6O)

Quantity Value Units Method Reference Comment
Δr46.4 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr7.5 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 6Ethanol) + Ethanol = (Chlorine anion • 7Ethanol)

By formula: (Cl- • 6C2H6O) + C2H6O = (Cl- • 7C2H6O)

Quantity Value Units Method Reference Comment
Δr41. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr113.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr7.1 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 7Ethanol) + Ethanol = (Chlorine anion • 8Ethanol)

By formula: (Cl- • 7C2H6O) + C2H6O = (Cl- • 8C2H6O)

Quantity Value Units Method Reference Comment
Δr38. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr6.7 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

MeCO2 anion + Ethanol = (MeCO2 anion • Ethanol)

By formula: C2H3O2- + C2H6O = (C2H3O2- • C2H6O)

Quantity Value Units Method Reference Comment
Δr86.6 ± 4.2kJ/molN/AMeot-Ner and Sieck, 1986gas phase; B,M
Quantity Value Units Method Reference Comment
Δr122.J/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr49.8 ± 6.7kJ/molTDAsMeot-Ner and Sieck, 1986gas phase; B

1-Propene, 2-methyl- + Ethanol = Propane, 2-ethoxy-2-methyl-

By formula: C4H8 + C2H6O = C6H14O

Quantity Value Units Method Reference Comment
Δr-32.0kJ/molCmSola, Pericas, et al., 1995liquid phase; ALS
Δr-32.0kJ/molKinSola, Pericas, et al., 1995liquid phase; ALS
Δr-62. ± 2.kJ/molEqkIborra, Izquierdo, et al., 1989gas phase; GC; ALS

C2H4NO2- + Ethanol = C4H10NO3-

By formula: C2H4NO2- + C2H6O = C4H10NO3-

Quantity Value Units Method Reference Comment
Δr73.5 ± 2.1kJ/molTDAsNieckarz, Atkins, et al., 2008gas phase; B
Quantity Value Units Method Reference Comment
Δr41. ± 4.2kJ/molTDAsNieckarz, Atkins, et al., 2008gas phase; B

Iodide + 2Ethanol = C4H12IO2-

By formula: I- + 2C2H6O = C4H12IO2-

Quantity Value Units Method Reference Comment
Δr43.93 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr18.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Bromine anion + 2Ethanol = C4H12BrO2-

By formula: Br- + 2C2H6O = C4H12BrO2-

Quantity Value Units Method Reference Comment
Δr48.1 ± 2.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr23.9kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Iodide + 3Ethanol = C6H18IO3-

By formula: I- + 3C2H6O = C6H18IO3-

Quantity Value Units Method Reference Comment
Δr35.1 ± 2.1kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr14.7kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Bromine anion + 3Ethanol = C6H18BrO3-

By formula: Br- + 3C2H6O = C6H18BrO3-

Quantity Value Units Method Reference Comment
Δr39.7 ± 1.3kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr18.3kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

C2H6FO- + 2Ethanol = C4H12FO2-

By formula: C2H6FO- + 2C2H6O = C4H12FO2-

Quantity Value Units Method Reference Comment
Δr86.2 ± 1.3kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr50.63kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Ethanol + Propanoic acid = Propanoic acid, ethyl ester + Water

By formula: C2H6O + C3H6O2 = C5H10O2 + H2O

Quantity Value Units Method Reference Comment
Δr-22.6 ± 0.42kJ/molEqkEssex and Sandholzer, 1938liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -23.54 kJ/mol; ALS

C4H12FO2- + 3Ethanol = C6H18FO3-

By formula: C4H12FO2- + 3C2H6O = C6H18FO3-

Quantity Value Units Method Reference Comment
Δr65.27 ± 0.42kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr34.0kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

phenoxide anion + Ethanol = C8H11O2-

By formula: C6H5O- + C2H6O = C8H11O2-

Quantity Value Units Method Reference Comment
Δr80.8 ± 4.2kJ/molN/AMeot-Ner and Sieck, 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr46.9 ± 6.7kJ/molTDAsMeot-Ner and Sieck, 1986gas phase; B

phenoxide anion + Ethanol = (phenoxide anion • Ethanol)

By formula: C6H5O- + C2H6O = (C6H5O- • C2H6O)

Quantity Value Units Method Reference Comment
Δr80.8kJ/molPHPMSMeot-Ner and Sieck, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr113.J/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; M

4Ethanol (l) + Titanium tetrachloride (l) = titanium(4+) ethanolate (l) + 4(Hydrogen chloride • 51.3Water) (solution)

By formula: 4C2H6O (l) + Cl4Ti (l) = C8H20O4Ti (l) + 4(HCl • 51.3H2O) (solution)

Quantity Value Units Method Reference Comment
Δr-205.4 ± 4.2kJ/molRSCBradley and Hillyer, 1966Please also see Pedley and Rylance, 1977.; MS

Fluorine anion + Ethanol = C2H5D6FO-

By formula: F- + C2H6O = C2H5D6FO-

Quantity Value Units Method Reference Comment
Δr99.2 ± 8.4kJ/molIMREWilkinson, Szulejko, et al., 1992gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B

Magnesium ion (1+) + Ethanol = (Magnesium ion (1+) • Ethanol)

By formula: Mg+ + C2H6O = (Mg+ • C2H6O)

Quantity Value Units Method Reference Comment
Δr260. ± 20.kJ/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M

3Sodium hydroxide + Carbonochloridic acid, ethyl ester = CNa2O3 + Ethanol + sodium chloride + Water

By formula: 3HNaO + C3H5ClO2 = CNa2O3 + C2H6O + ClNa + H2O

Quantity Value Units Method Reference Comment
Δr-323.3 ± 1.7kJ/molCmDavies, Finch, et al., 1980liquid phase; Heat of hydrolysis; ALS

Acetylimidazole diethyl acetal + Water = Ethyl Acetate + 1H-Imidazole + Ethanol

By formula: C9H16N2O2 + H2O = C4H8O2 + C3H4N2 + C2H6O

Quantity Value Units Method Reference Comment
Δr-44.69 ± 0.67kJ/molCmGuthrie and Pike, 1987liquid phase; Heat of hydrolysis; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
120. QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
200. XN/A 
190.6600.MN/A 
200. XN/AValue given here as quoted by missing citation.
230. MN/A 
150.6400.XN/A 
220. MN/A 
160. M,XTimmermans, 1960Value given here as quoted by missing citation.
190. MButler, Ramchandani, et al., 1935 

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Rossini, 1932
Rossini, F.D., The heats of combustion of methyl and ethyl alcohols, J. Res. NBS, 1932, 8, 119-139. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Zhuravlev E.Z., 1959
Zhuravlev E.Z., Isotopic effect on thermodynamic functions of some organic deuterocompounds in the ideal gas state, Tr. Khim. i Khim. Tekhnol., 1959, 2, 475-485. [all data]

Chermin H.A.G., 1961
Chermin H.A.G., Thermo data for petrochemicals. Part 28. Gaseous normal alcohols. The important thermo properties are presented for all the gaseous normal alcohols from methanol through n-decanol, Petrol. Refiner, 1961, 40 (4), 127-130. [all data]

Green J.H.S., 1961
Green J.H.S., Thermodynamic properties of organic oxygen compounds. Part 5. Ethyl alcohol, Trans. Faraday Soc., 1961, 57, 2132-2137. [all data]

Green J.H.S., 1961, 2
Green J.H.S., Thermodynamic properties of the normal alcohols C1-C12, J. Appl. Chem., 1961, 11, 397-404. [all data]

Chao J., 1986
Chao J., Ideal gas thermodynamic properties of simple alkanols, Int. J. Thermophys., 1986, 7, 431-442. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

Chao J., 1986, 2
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Bennewitz K., 1938
Bennewitz K., Molar heats of vapor organic compounds, Z. Phys. Chem. (Leipzig), 1938, B39, 126-144. [all data]

Eucken A., 1948
Eucken A., Rotational hindrance in ether and alcohol molecules on the basis of heat capacity determinations, Z. Elektrochem., 1948, 52, 195-204. [all data]

Barrow G.M., 1952
Barrow G.M., Heat capacity, gas imperfection, infrared spectra, and internal rotation barriers of ethyl alcohol, J. Chem. Phys., 1952, 20, 1739-1744. [all data]

Sinke G.C., 1953
Sinke G.C., The heat capacity of organic vapors. VIII. Data for some aliphatic alcohols using an improved flow calorimeter requiring only 25 ml of sample, J. Am. Chem. Soc., 1953, 75, 1815-1818. [all data]

Halford J.O., 1957
Halford J.O., Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity, J. Phys. Chem., 1957, 61, 1536-1539. [all data]

Counsell J.F., 1970
Counsell J.F., Thermodynamic properties of organic oxygen compounds. 24. Vapor heat capacities and enthalpies of vaporization of ethanol, 2-methyl-1-propanol, and 1-pentanol, J. Chem. Thermodyn., 1970, 2, 367-372. [all data]

Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]

Rossini, 1934
Rossini, F.D., Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages, J. Res. NBS, 1934, 13, 189-197. [all data]

Green, 1960
Green, J.H.S., Revision of the values of the heats of formation of normal alcohols, Chem. Ind. (London), 1960, 1215-1216. [all data]

Parks, 1925
Parks, G.S., Thermal data on organic compounds I. The heat capacities and free energies of methyl, ethyl and normal-butyl alcohols, J. Am. Chem. Soc., 1925, 47, 338-345. [all data]

Richards and Davis, 1920
Richards, T.W.; Davis, H.S., The heats of combustion of benzene, toluene, aliphatic alcohols, cyclohexanol, and other carbon compounds, J. Am. Chem. Soc., 1920, 42, 1599-1617. [all data]

Emery and Benedict, 1911
Emery, A.G.; Benedict, F.G., The heat of combustion of compounds of physiological importance, Am. J. Physiol., 1911, 28, 301-307. [all data]

Haida, Suga, et al., 1977
Haida, O.; Suga, H.; Seki, S., Calorimetric study of the glassy state. XII. Plural glass-transition phenomena of ethanol, J. Chem. Thermodynam., 1977, 9, 1133-1148. [all data]

Kelley, 1929
Kelley, K.K., The heat capacities of ethyl and hexyl alcohols from 16°K to 298°K and the corresponding entropies and free energies, J. Am. Chem. Soc., 1929, 51, 779-786. [all data]

Petrov, Peshekhodov, et al., 1989
Petrov, A.N.; Peshekhodov, P.B.; Al'per, G.A., Heat capacity of non-aqueous solutions of non-electrolyts with N,N-dimethylformamide as a base, Sbornik Nauch. Trud., Termodin. Rast. neelect., Ivanovo, Inst. nevod. rast., 1989, Akad. [all data]

Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M., Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc., Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]

Ogawa and Murakami, 1986
Ogawa, H.; Murakami, S., Excess isobaric heat capacities for water + alkanol mixtures at 298.15 K, Thermochim. Acta, 1986, 109, 145-154. [all data]

Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S., Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K, J. Chem. Thermodynam., 1986, 18, 63-73. [all data]

Ogawa and Murakami, 1985
Ogawa, H.; Murakami, S., Flow microcalorimeter for heat capacities of solutions, Thermochim. Acta, 1985, 88, 255-260. [all data]

Stephens and Olson, 1984
Stephens, M.; Olson, J.D., Measurement of excess heat capacities by differential scanning calorimetry, Thermochim. Acta, 1984, 76, 79-85. [all data]

Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G., Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol), J. Chem. Thermodynam., 1984, 16, 225-235. [all data]

Benson and D'Arcy, 1982
Benson, G.C.; D'Arcy, P.J., Excess isobaric heat capacities of water - n-alcohol mixtures, J. Chem. Eng. Data, 1982, 27, 439-442. [all data]

Villamanan, Casanova, et al., 1982
Villamanan, M.A.; Casanova, C.; Roux-Desgranges, G.; Grolier, J.-P.E., Thermochemical behavior of mixtures of n-alcohol + aliphatic ether: heat capacities and volumes at 298.15 K, Thermochim. Acta, 1982, 52, 279-283. [all data]

Brown and Ziegler, 1979
Brown, G.N., Jr.; Ziegler, W.T., Temperature dependence of excess thermodynamic properties of ethanol + n-heptane and 2-propanol + n-heptane solutions, J. Chem. Eng. Data, 1979, 24, 319-330. [all data]

Vesely, Zabransky, et al., 1979
Vesely, F.; Zabransky, M.; Svoboda, V.; Pick, J., The use of mixing calorimeter for measuring heat capacities of liquids, Coll. Czech. Chem. Commun., 1979, 44, 3529-3532. [all data]

Vesely, Svoboda, et al., 1977
Vesely, F.; Svoboda, V.; Pick, J., Heat capacities of some organic liquids determined with the mixing calorimeter, 1st Czech. Conf. Calorimetry (Lect. Short Commun.), 1977, C9-1-C9-4. [all data]

Fortier, Benson, et al., 1976
Fortier, J.-L.; Benson, G.C.; Picker, P., Heat capacities of some organic liquids determined with the Picker flow calorimeter, J. Chem. Thermodynam., 1976, 8, 289-299. [all data]

Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C., Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter, J. Chem. Thermodynam., 1976, 8, 411-423. [all data]

Pedersen, Kay, et al., 1975
Pedersen, M.J.; Kay, W.B.; Hershey, H.C., Excess enthalpies, heat capacities, and excess heat capacities as a function of temperature in liquid mixtures of ethanol + toluene, ethanol + hexamethyldisiloxane, and hexamethyldisiloxane + toluene, J. Chem. Thermodynam., 1975, 7, 1107-1118. [all data]

Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E., Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos, An. Quim., 1970, 66, 961-967. [all data]

Nikolaev, Rabinovich, et al., 1967
Nikolaev, P.N.; Rabinovich, I.B.; Lebedev, B.V., Specific heat of H- and D-ethyl alcohol in the interval 80-250K, Zhur. Fiz. Khim., 1967, 41, 1294-1299. [all data]

Hwa and Ziegler, 1966
Hwa, S.C.P.; Ziegler, W.T., Temperature dependence of excess thermodynamic properties of ethanol-methylcyclohexane and ethanol-toluene systems, J. Phys. Chem., 1966, 70(8), 2572-2593. [all data]

Rabinovich and Nikolaev, 1962
Rabinovich, I.B.; Nikolaev, P.N., Isotopic effect in the specific heat of some deutero compounds, Dokl. Akad. Nauk, 1962, SSSR 142, 1335-1338. [all data]

Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat in homologous series of binary and ternary positive azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]

Mazur, 1940
Mazur, V.J., On the specific heat of ethyl alcohol, Acta Phys. Polon., 1940, 8, 6-11. [all data]

Bykov, 1939
Bykov, V.T., Heat of mixing of liquids, Zhur. Fiz. Khim., 1939, 13, 1013-1019. [all data]

Ernst, Watkins, et al., 1936
Ernst, R.C.; Watkins, C.H.; Ruwe, H.H., The physical properties of the ternary system ethyl alcohol-glycerin-water, J. Phys. Chem., 1936, 40, 627-635. [all data]

Fiock, Ginnings, et al., 1931
Fiock, E.F.; Ginnings, D.C.; Holton, W.B., Calorimetric determinations of thermal properties of methyl alcohol, ethyl alcohol, and benzene, J. Res., 1931, NBS 6, 881-900. [all data]

Mitsukuri and Hara, 1929
Mitsukuri, S.; Hara, K., Specific heats of acetone, methyl-, ethyl-, and n-propyl-alcohols at low temperatures, Bull. Chem. Soc. Japan, 1929, 4, 77-81. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Willams and Daniels, 1924
Willams, J.W.; Daniels, F., The specific heats of certain organic liquids at elevated temperatures, J. Am. Chem. Soc., 1924, 46, 903-917. [all data]

Gibson, Parks, et al., 1920
Gibson, G.E.; Parks, G.S.; Latimer, W.M., Entropy changes at low temperatures. II. Ethyl and propyl alcohols and their equal molal mixture, J. Am. Chem. Soc., 1920, 42, 1542-1550. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Mejia, Segura, et al., 2010
Mejia, Andres; Segura, Hugo; Cartes, Marcela, Vapor-Liquid Equilibria and Interfacial Tensions of the System Ethanol + 2-Methoxy-2-methylpropane, J. Chem. Eng. Data, 2010, 55, 1, 428-434, https://doi.org/10.1021/je9004068 . [all data]

Aucejo, Loras, et al., 1999
Aucejo, Antonio; Loras, Sonia; Muñoz, Rosa; Ordoñez, Luis Miguel, Isobaric vapor--liquid equilibrium for binary mixtures of 2-methylpentane+ethanol and +2-methyl-2-propanol, Fluid Phase Equilibria, 1999, 156, 1-2, 173-183, https://doi.org/10.1016/S0378-3812(99)00029-1 . [all data]

Diogo, Santos, et al., 1995
Diogo, Hermínio P.; Santos, Rui C.; Nunes, Paulo M.; Minas da Piedade, Manuel E., Ebulliometric apparatus for the measurement of enthalpies of vaporization, Thermochimica Acta, 1995, 249, 113-120, https://doi.org/10.1016/0040-6031(95)90678-9 . [all data]

Ortega, Susial, et al., 1990
Ortega, Juan; Susial, Pedro; De Alfonso, Casiano, Isobaric vapor-liquid equilibrium of methyl butanoate with ethanol and 1-propanol binary systems, J. Chem. Eng. Data, 1990, 35, 2, 216-219, https://doi.org/10.1021/je00060a037 . [all data]

Vine and Wormald, 1989
Vine, M.D.; Wormald, C.J., The enthalpy of ethanol, The Journal of Chemical Thermodynamics, 1989, 21, 11, 1151-1157, https://doi.org/10.1016/0021-9614(89)90101-8 . [all data]

Dong, Lin, et al., 1988
Dong, Jin-Quan; Lin, Rui-Sen; Yen, Wen-Hsing, Heats of vaporization and gaseous molar heat capacities of ethanol and the binary mixture of ethanol and benzene, Can. J. Chem., 1988, 66, 4, 783-790, https://doi.org/10.1139/v88-136 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J., The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point, The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Counsell, Fenwick, et al., 1970
Counsell, J.F.; Fenwick, J.O.; Lees, E.B., Thermodynamic properties of organic oxygen compounds 24. Vapour heat capacities and enthalpies of vaporization of ethanol, 2-methylpropan-1-ol, and pentan-1-ol, The Journal of Chemical Thermodynamics, 1970, 2, 3, 367-372, https://doi.org/10.1016/0021-9614(70)90007-8 . [all data]

Van Ness, Soczek, et al., 1967
Van Ness, Hendrick C.; Soczek, C.A.; Peloquin, G.L.; Machado, R.L., Thermodynamic excess properties of three alcohol-hydrocarbon systems, J. Chem. Eng. Data, 1967, 12, 2, 217-224, https://doi.org/10.1021/je60033a017 . [all data]

Kretschmer and Wiebe, 1949
Kretschmer, Carl B.; Wiebe, Richard., Liquid-Vapor Equilibrium of Ethanol--Toluene Solutions, J. Am. Chem. Soc., 1949, 71, 5, 1793-1797, https://doi.org/10.1021/ja01173a076 . [all data]

Oguri, Anjo, et al., 1934
Oguri, S.; Anjo, S.; Kuwabara, Y., Bull. Waseda Appl. Chem. Soc., 1934, 22, 1. [all data]

Kahlbaum, 1883
Kahlbaum, Georg W.A., Ueber die Abhängigkeit der Siedetemperatur vom Luftdruck, Ber. Dtsch. Chem. Ges., 1883, 16, 2, 2476-2484, https://doi.org/10.1002/cber.188301602178 . [all data]

Ambrose, Sprake, et al., 1975
Ambrose, D.; Sprake, C.H.S.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. XXXVII. Vapour Pressures of Methanol, Ethanol, Pentan-1-ol, and Octan-1-ol from the Normal Boiling Temperature to the Critical Temperature, J. Chem. Thermodyn., 1975, 7, 2, 185-190, https://doi.org/10.1016/0021-9614(75)90267-0 . [all data]

Ambrose and Sprake, 1970
Ambrose, D.; Sprake, C.H.S., Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols, The Journal of Chemical Thermodynamics, 1970, 2, 5, 631-645, https://doi.org/10.1016/0021-9614(70)90038-8 . [all data]

Yoshida, 1944
Yoshida, U., Structural relaxation of amorphous solids and the cybotactic structure of super-cooled liquids, Mem. Coll. Sci. Kyoto Imp. Univ., 1944, 24A, 135-148. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Bomse and Beauchamp, 1981
Bomse, D.S.; Beauchamp, J.L., Slow Multiphoton Excitation as a Probe of Bimolecular and Unimolecular Reaction Energetics. Multiphoton Dissociation of Proton-Bound Alcohol Dimers, J. Am. Chem. Soc., 1981, 103, 12, 3292, https://doi.org/10.1021/ja00402a011 . [all data]

Meot-Ner and Sieck, 1986
Meot-Ner, M.; Sieck, L.W., The ionic hydrogen bond and ion solvation. 5. OH...O- bonds. Gas phase solvation and clustering of alkoxide and carboxylate anions, J. Am. Chem. Soc., 1986, 108, 7525. [all data]

Caldwell, Rozeboom, et al., 1984
Caldwell, G.; Rozeboom, M.D.; Kiplinger, J.P.; Bartmess, J.E., Anion-alcohol hydrogen bond strengths in the gas phase, J. Am. Chem. Soc., 1984, 106, 4660. [all data]

Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P., Thermodynamics of the Association Reactions OH- - H2O = HOHOH- and CH3O- - CH3OH = CH3OHOCH3- in the Gas Phase, J. Phys. Chem., 1990, 94, 12, 5184, https://doi.org/10.1021/j100375a076 . [all data]

Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W., Relative acidities of water and methanol, and the stabilities of the dimer adducts, J. Phys. Chem., 1986, 90, 6687. [all data]

Meot-Ner(Mautner), 1986
Meot-Ner(Mautner), M., Comparative Stabilities of Cationic and Anionic Hydrogen-Bonded Networks. Mixed Clusters of Water-Methanol, J. Am. Chem. Soc., 1986, 108, 20, 6189, https://doi.org/10.1021/ja00280a014 . [all data]

McIver, Scott, et al., 1973
McIver, R.T., Jr.; Scott, J.A.; Riveros, J.M., Effect of solvation on the intrinsic relative acidity of methanol and ethanol, J. Am. Chem. Soc., 1973, 95, 2706. [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Blanchard, Joly, et al., 1974
Blanchard, J.M.; Joly, R.D.; Lettoffe, J.M.; Perachon, G.; Thourey, J., J. Chim. Phys. Phys.-Chim. Biol., 1974, 71, 472. [all data]

Tel'noi and Rabinovich, 1980
Tel'noi, V.I.; Rabinovich, I.B., Russ. Chem. Rev., 1980, 49, 603. [all data]

Wagman, Evans W.H., et al., 1982
Wagman, D.D.; Evans W.H.; Parker, V.B.; Schumm, R.H.; Halow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L., The NBS Tables of Chemical Thermodynamic Properties; J. Phys. Chem. Ref. Data, 1982, 11, Suppl. 2. [all data]

Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, S.W., In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-M.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]

Bogdanov, Peschke, et al., 1999
Bogdanov, B.; Peschke, M.; Tonner, D.S.; Szulejko, J.E.; McMahon, T.B., Stepwise solvation of halides by alcohol molecules in the gas phase, Int. J. Mass Spectrom., 1999, 187, 707-725, https://doi.org/10.1016/S1387-3806(98)14180-5 . [all data]

Hiraoka, 1987
Hiraoka, K., Relation Between Gas Phase Stepwise and Bulk Solvation of Cl- with Water and Aliphatic Alcohols, Bull. Chem. Soc. Japan, 1987, 60, 7, 2555, https://doi.org/10.1246/bcsj.60.2555 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Hiraoka and Mizuse, 1987
Hiraoka, K.; Mizuse, S., Gas-Phase Solvation of Cl- with H2O, CH3OH, C2H4OH, i-C3H7OH, n-C3H7OH, and t-C4H9OH, Chem. Phys., 1987, 118, 3, 457, https://doi.org/10.1016/0301-0104(87)85078-4 . [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

Riveros, 1974
Riveros, J.M., Formation and Relative Stability of Negative Clustered Ions by Ion Cyclotron Resonance Spectroscopy, Adv. Mass Spectrom., 1974, 6, 277. [all data]

Riveros, Breda, et al., 1973
Riveros, J.M.; Breda, A.C.; Blair, L.K., Formation and relative stability of chloride ion clusters in the gas phase by ICR spectroscopy, J. Am. Chem. Soc., 1973, 95, 4066. [all data]

Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C., Vibronic structure of alkoxy radicals via photoelectron spectroscopy, J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767 . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols, J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Meot-ner, 1988
Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P., Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements, J. Am. Chem. Soc., 1984, 106, 967. [all data]

Tanabe, Morgon, et al., 1996
Tanabe, F.K.J.; Morgon, N.H.; Riveros, J.M., Relative Bromide and Iodide Affinity of Simple Solvent Molecules Determined by FT-ICR, J. Phys. Chem., 1996, 100, 8, 2862-2866, https://doi.org/10.1021/jp952290p . [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities., J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079 . [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B., Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments, Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B., Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Hiraoka, Mizure, et al., 1988
Hiraoka, K.; Mizure, S.; Yamabe, S.; Nakatsuji, Y., Gas Phase Clustering Reactions of CN- and CH2CN- with MeCN, Chem. Phys. Lett., 1988, 148, 6, 497, https://doi.org/10.1016/0009-2614(88)80320-8 . [all data]

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds, J. Am. Chem. Soc., 1938, 60, 440-450. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Sola, Pericas, et al., 1995
Sola, L.; Pericas, M.A.; Cunill, F.; Tejero, J., Thermodynamic and kinetic studies of the liquid phase synthesis of tert-butyl ethyl ether using a reaction calorimeter, Ind. Eng. Chem. Res., 1995, 34, 3718-3725. [all data]

Iborra, Izquierdo, et al., 1989
Iborra, M.; Izquierdo, J.F.; Tejero, J.; Cunill, F., Equilibrium constant for ethyl tert-butyl ether vapor-phase synthesis, J. Chem. Eng. Data, 1989, 34, 1-5. [all data]

Nieckarz, Atkins, et al., 2008
Nieckarz, R.J.; Atkins, C.G.; McMahon, T.B., Effects of Isomerization on the Measured Thermochemical Properties of Deprotonated Glycine/Protic-Solvent Clusters, Chemphyschem, 2008, 9, 18, 2816-2825, https://doi.org/10.1002/cphc.200800525 . [all data]

Essex and Sandholzer, 1938
Essex, H.; Sandholzer, M., The free energy of formation of ethyl propionate, J. Phys. Chem., 1938, 42, 317-333. [all data]

Bradley and Hillyer, 1966
Bradley, D.C.; Hillyer, M.J., Trans. Faraday Soc., 1966, 62, 2367. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B., Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions, Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M . [all data]

Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S., Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques, J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020 . [all data]

Davies, Finch, et al., 1980
Davies, R.H.; Finch, A.; Gardner, P.J., The standard enthalpy of formation of liquid and gaseous ethylchloroformate (C3H5O2Cl), J. Chem. Thermodyn., 1980, 12, 291-296. [all data]

Guthrie and Pike, 1987
Guthrie, J.P.; Pike, D.C., Hydration of acylimidazoles: tetrahedral intermediates in acylimidazole hydrolysis and nucleophilic attack by imidazole on esters. The question of concerted mechanisms for acyl transfers, Can. J. Chem., 1987, 65, 1951-1969. [all data]

Timmermans, 1960
Timmermans, J., The Physico-Chemical Constants of Binary Systems in Conc-- entrated Solutions, Wiley-Interscience, New York, 1960. [all data]

Butler, Ramchandani, et al., 1935
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W., The Solubility of Non-Electrolytes. Part 1. The Free Energy of Hydration of Some Alphatic Alcohols, J. Chem. Soc., 1935, 280-285, https://doi.org/10.1039/jr9350000280 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References