Ethylene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas12.54kcal/molReviewChase, 1998Data last reviewed in September, 1965
Δfgas12.5 ± 0.1kcal/molReviewManion, 2002adopted recommendation of Gurvich, Veyts, et al., 1991; DRB
Quantity Value Units Method Reference Comment
Δcgas-337.285 ± 0.072kcal/molCmRossini and Knowlton, 1937Reanalyzed by Cox and Pilcher, 1970, Original value = -337.230 ± 0.072 kcal/mol; Corresponding Δfgas = 12.55 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
gas,1 bar52.419cal/mol*KReviewChase, 1998Data last reviewed in September, 1965

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
7.94950.Thermodynamics Research Center, 1997p=1 bar. Recommended entropies and heat capacities are in good agreement with those obtained from other statistical thermodynamics calculations [ Chao J., 1975, Gurvich, Veyts, et al., 1989] as well as with ab initio value of S(298.15 K)=219.14 J/mol*K [ East A.L.L., 1997].; GT
7.952100.
8.045150.
8.454200.
9.704273.15
10.25298.15
10.30300.
12.68400.
14.93500.
16.89600.
18.57700.
20.03800.
21.31900.
22.441000.
23.421100.
24.2851200.
25.0381300.
25.7001400.
26.2811500.
27.4401750.
28.2912000.
28.9272250.
29.4122500.
29.7852750.
30.0813000.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
8.284 ± 0.062178.15Burcik E.J., 1941Other experimental values of heat capacity [ Haas M.E., 1932] are less accurate, see [ Chao J., 1975]. Please also see Eucken A., 1933.; GT
8.437 ± 0.062192.35
8.674 ± 0.065210.40
8.975 ± 0.067230.90
9.326 ± 0.069250.60
9.739 ± 0.005270.7
9.804 ± 0.074271.80
10.24 ± 0.076293.45
10.39 ± 0.041300.0
10.99 ± 0.01320.7
11.89 ± 0.088367.7
14.16 ± 0.11463.6

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1200.1200. to 6000.
A -1.52674025.45660
B 44.073113.282171
C -27.00091-0.628222
D 6.8106910.041729
E 0.075416-6.248731
F 11.51370-8.451810
G 38.9954165.73671
H 12.5399012.53990
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in September, 1965 Data last reviewed in September, 1965

References

Go To: Top, Gas phase thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Manion, 2002
Manion, J.A., Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703 . [all data]

Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, 4th edition, Volume 2, Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all data]

Rossini and Knowlton, 1937
Rossini, F.d.; Knowlton, J.W., Calorimetric determination of the heats of combustion of ethylene and propylene, J. Res. NBS, 1937, 19, 249-262. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Chao J., 1975
Chao J., Ideal gas thermodynamic properties of ethylene and propylene, J. Phys. Chem. Ref. Data, 1975, 4, 251-261. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

East A.L.L., 1997
East A.L.L., Ab initio statistical thermodynamical models for the computation of third-law entropies, J. Chem. Phys., 1997, 106, 6655-6674. [all data]

Burcik E.J., 1941
Burcik E.J., The vibrational energy levels and specific heat of ethylene, J. Chem. Phys., 1941, 9, 118-119. [all data]

Haas M.E., 1932
Haas M.E., The heat capacity and free energy of formation of ethylene gas, J. Phys. Chem., 1932, 36, 2127-2132. [all data]

Eucken A., 1933
Eucken A., Molar heats and normal frequencies of ethane and ethylene, Z. Phys. Chem., 1933, B20, 184-194. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, References