9-epi-β-Caryophyllene
- Formula: C15H24
- Molecular weight: 204.3511
- IUPAC Standard InChIKey: NPNUFJAVOOONJE-QWAJQTJBSA-N
- Chemical structure:
This structure is also available as a 2d Mol file - Species with the same structure:
- Stereoisomers:
- Bicyclo[7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene-,[1R-(1R*,4Z,9S*)]-
- Bicyclo[7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene-
- (1R,9R,E)-4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene
- Caryophyllene
- cis-Caryophyllene
- (+)(E)-Caryophyllene
- 2-epi-(E)- β-Caryophyllene
- Bicyclo[7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene-deriv.
- (E)-Caryophyllene
- trans-β-Caryophyllene
- cis-Caryophyllene
- 2-epi-(E)-β-Caryophyllene
- β-cis-Caryophyllene
- (E)-β-Caryophyllene
- Isocaryophyllene
- Information on this page:
- Options:
Gas Chromatography
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-5 | 1467. | Karimi, Farmani, et al., 2011 | 30. m/0.25 mm/0.25 μm, Helium, 3. K/min; Tstart: 60. C; Tend: 240. C |
Capillary | DB-5 MS | 1471. | Mesa-Arango, Betancur-Galvis, et al., 2010 | 60. m/0.25 mm/0.25 μm, Helium, 40. C @ 15. min, 5. K/min, 250. C @ 15. min |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-5 | 1466. | de Albuquerque, Alves, et al., 2008 | 30. m/0.25 mm/0.25 μm, Hydrogen; Program: 35 0C 4 0C/min -> 180 0C 17 0C/min -> 280 0C (10 min) |
References
Go To: Top, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Karimi, Farmani, et al., 2011
Karimi, H.; Farmani, A.; Nourizadeh, H.,
A performance comparison of modern statistical technique for molecular descriptor selection and retention prediction of essential oil from leaves,
Amer. J. Sci. Res., 2011, 38, 36-40. [all data]
Mesa-Arango, Betancur-Galvis, et al., 2010
Mesa-Arango, A.C.; Betancur-Galvis, L.; Montiel, J.; Bueno, J.G.; Baena, A.; Duran, D.C.; Martinez, J.R.; Stashenko, E.E.,
Antifungal activity and chemical composition of the essential oils of Lippia alba (Miller) N.E. Brown grown in different regions of Colombia,
J. Essential Oil Res., 2010, 22, 6, 568-574, https://doi.org/10.1080/10412905.2010.9700402
. [all data]
de Albuquerque, Alves, et al., 2008
de Albuquerque, I.L.; Alves, L.A.; Lemos, T.L.G.; Dorneles, C.A.; de Morais, M.O.,
Constituents of the essential oil of Brazilian grenn propolis from Brazil,
J. Essent. Oil Res., 2008, 20, 1-2. [all data]
Notes
Go To: Top, Gas Chromatography, References
- Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.