Benzene, nitro-
- Formula: C6H5NO2
- Molecular weight: 123.1094
- IUPAC Standard InChIKey: LQNUZADURLCDLV-UHFFFAOYSA-N
- CAS Registry Number: 98-95-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Essence of Mirbane; Essence of Myrbane; Mirbane oil; Nitrobenzene; Nitrobenzol; Oil of Mirbane; Oil of Myrbane; Nitrobenzeen; Nitrobenzen; NCI-C60082; Rcra waste number U169; UN 1662; NSC 9573
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: Cl- + C6H5NO2 = (Cl- • C6H5NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 68.2 ± 4.2 | kJ/mol | TDAs | Chowdhury and Kebarle, 1986 | gas phase; B,M |
ΔrH° | 69.0 | kJ/mol | PHPMS | Paul and Kebarle, 1991 | gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M |
ΔrS° | 81.2 | J/mol*K | PHPMS | Chowdhury and Kebarle, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 43.9 ± 6.7 | kJ/mol | TDAs | Chowdhury and Kebarle, 1986 | gas phase; B |
ΔrG° | 29.7 | kJ/mol | TDEq | French, Ikuta, et al., 1982 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
43.9 | 300. | PHPMS | Paul and Kebarle, 1991 | gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M |
32. | 300. | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
C6H4NO2- + =
By formula: C6H4NO2- + H+ = C6H5NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1577. ± 13. | kJ/mol | G+TS | Cheng and Grabowski, 1989 | gas phase; between EtOH, iPrOH; B |
ΔrH° | 1482. ± 13. | kJ/mol | G+TS | Meot-ner and Kafafi, 1988 | gas phase; acidity stronger than all levels of computation by 25 kcal/mol; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1545. ± 13. | kJ/mol | IMRB | Cheng and Grabowski, 1989 | gas phase; between EtOH, iPrOH; B |
ΔrG° | 1450. ± 13. | kJ/mol | IMRB | Meot-ner and Kafafi, 1988 | gas phase; acidity stronger than all levels of computation by 25 kcal/mol; B |
By formula: Br- + C6H5NO2 = (Br- • C6H5NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 62.8 ± 7.5 | kJ/mol | TDAs | Paul and Kebarle, 1991 | gas phase; ΔGaff at 423 K; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84.5 | J/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 27. ± 4.2 | kJ/mol | TDAs | Paul and Kebarle, 1991 | gas phase; ΔGaff at 423 K; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
27. | 423. | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: C6H7N+ + C6H5NO2 = (C6H7N+ • C6H5NO2)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74.1 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88.7 | J/mol*K | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
44.8 | 324. | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
By formula: NO2- + C6H5NO2 = (NO2- • C6H5NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.4 ± 8.4 | kJ/mol | TDAs | Grimsrud, Chowdhury, et al., 1986 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 73.2 | J/mol*K | PHPMS | Grimsrud, Chowdhury, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 37. ± 8.4 | kJ/mol | TDAs | Grimsrud, Chowdhury, et al., 1986 | gas phase; B |
By formula: C11H10+ + C6H5NO2 = (C11H10+ • C6H5NO2)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.8 | kJ/mol | PHPMS | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | PHPMS | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; M |
By formula: NO- + C6H5NO2 = (NO- • C6H5NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 164. | kJ/mol | ICR | Reents and Freiser, 1981 | gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M |
By formula: F6S- + C6H5NO2 = (F6S- • C6H5NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 62.3 ± 4.2 | kJ/mol | TDAs | Chowdhury and Kebarle, 1986 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 28. ± 6.7 | kJ/mol | TDAs | Chowdhury and Kebarle, 1986 | gas phase; B |
By formula: F6S- + C6H5NO2 = (F6S- • C6H5NO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 62.3 | kJ/mol | PHPMS | Chowdhury and Kebarle, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 115. | J/mol*K | PHPMS | Chowdhury and Kebarle, 1986 | gas phase; M |
By formula: C7F14- + C6H5NO2 = (C7F14- • C6H5NO2)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
28. | 300. | PHPMS | Chowdhury and Kebarle, 1986 | gas phase; M |
+ = C13H5F14NO2-
By formula: C7F14- + C6H5NO2 = C13H5F14NO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 28. ± 4.2 | kJ/mol | IMRE | Chowdhury and Kebarle, 1986 | gas phase; B |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chowdhury and Kebarle, 1986
Chowdhury, S.; Kebarle, P.,
Role of Binding Energies in A-.B and A.B- Complexes in the Kinetics of Gas Phase Electron Transfer Reactions:A- + B = A + B- Involving Perfluoro Compounds: SF6, C6F11CF3,
J. Chem. Phys., 1986, 85, 9, 4989, https://doi.org/10.1063/1.451687
. [all data]
Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P.,
Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-,
J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014
. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Cheng and Grabowski, 1989
Cheng, X.; Grabowski, J.J.,
Gas-phase Acidity of Nitrobenzene from Flowing Afterglow Bracketing Studies,
Rapid Commun. Mass Spectrom., 1989, 3, 2, 34-36, https://doi.org/10.1002/rcm.1290030207
. [all data]
Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A.,
Carbon Acidities of Aromatic Compounds,
J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003
. [all data]
Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S.,
Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems,
J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026
. [all data]
Grimsrud, Chowdhury, et al., 1986
Grimsrud, E.P.; Chowdhury, S.; Kebarle, P.,
Gas Phase Reactions of NO2- with Nitrobenzenes and Quinones. Electron Transfer, Clusters, and Formation of Phenoxide and Quinoxide Negative Ions. Use of NO2 as a NICI Reagent Gas.,
Int. J. Mass Spectrom. Ion Proc., 1986, 68, 1-2, 57, https://doi.org/10.1016/0168-1176(86)87068-9
. [all data]
El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M.,
Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors,
J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017
. [all data]
Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S.,
Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes,
J. Am. Chem. Soc., 1981, 103, 2791. [all data]
Farid and McMahon, 1978
Farid, R.; McMahon, T.B.,
Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy,
Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0
. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.