3-Pentanone
- Formula: C5H10O
- Molecular weight: 86.1323
- IUPAC Standard InChIKey: FDPIMTJIUBPUKL-UHFFFAOYSA-N
- CAS Registry Number: 96-22-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Diethyl ketone; 1,3-Dimethylacetone; DEK; Ethyl ketone; Metacetone; Methacetone; Propione; (C2H5)2CO; Ethyl propionyl; Pentan-3-one; Diethylcetone; Pentanone-3; UN 1156; Dimethylacetone; NSC 8653
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C5H11O+ + C5H10O = (C5H11O+ • C5H10O)
Bond type: Hydrogen bonds of the type OH-O between organics
Bond type: Hydrogen bonds between protonated and neutral organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.2 | kcal/mol | PHPMS | Meot-Ner (Mautner), Sieck, et al., 1994 | gas phase; M |
ΔrH° | 28.9 | kcal/mol | PHPMS | Szulejko and McMahon, 1991 | gas phase; M |
ΔrH° | 30.2 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 35.7 | cal/mol*K | PHPMS | Meot-Ner (Mautner), Sieck, et al., 1994 | gas phase; M |
ΔrS° | 33.6 | cal/mol*K | PHPMS | Szulejko and McMahon, 1991 | gas phase; M |
ΔrS° | 31.2 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 20.9 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: C3H9Sn+ + C5H10O = (C3H9Sn+ • C5H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 39.5 | kcal/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 31.6 | cal/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
22.9 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
By formula: CH6N+ + C5H10O = (CH6N+ • C5H10O)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25.9 | kcal/mol | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26. | cal/mol*K | N/A | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
11.8 | 549. | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: Cl- + C5H10O = (Cl- • C5H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.1 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.6 | cal/mol*K | N/A | Larson and McMahon, 1984 | gas phase; switching reaction(Cl-)(CH3)2CO, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.2 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
(CAS Reg. No. 117951-42-5 • 4294967295) + = CAS Reg. No. 117951-42-5
By formula: (CAS Reg. No. 117951-42-5 • 4294967295C5H10O) + C5H10O = CAS Reg. No. 117951-42-5
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.8 ± 2.1 | kcal/mol | N/A | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 41.3 ± 2.9 | kcal/mol | Ther | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
C5H9O- + =
By formula: C5H9O- + H+ = C5H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 368.5 ± 2.2 | kcal/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; B |
ΔrH° | 362.8 ± 2.3 | kcal/mol | D-EA | Zimmerman, Reed, et al., 1977 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 361.4 ± 2.0 | kcal/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
By formula: C3H10N+ + C5H10O = (C3H10N+ • C5H10O)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.5 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1983 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.4 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1983 | gas phase; M |
By formula: NO- + C5H10O = (NO- • C5H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.9 | kcal/mol | ICR | Reents and Freiser, 1981 | gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M |
By formula: H2 + C5H10O = C5H12O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -13.56 | kcal/mol | Eqk | Buckley and Herington, 1965 | gas phase; ALS |
By formula: C5H12O = H2 + C5H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.56 | kcal/mol | Eqk | Buckley and Herington, 1965 | gas phase; ALS |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Meot-Ner (Mautner), Sieck, et al., 1994
Meot-Ner (Mautner), M.; Sieck, L.W.; Liebman, J.F.; Scheiner, S.; Duan, X.,
The Ionic Hydrogen Bond. 5. Polydentate and Solvent-Bridged Structures. Complexing of the Proton and the Hydronium Ions by Polyethers,
J. Am. Chem. Soc., 1994, 116, 17, 7848, https://doi.org/10.1021/ja00096a047
. [all data]
Szulejko and McMahon, 1991
Szulejko, J.E.; McMahon, T.B.,
A Pulsed Electron Beam, Variable Temperature, High Pressure Mass Spectrometric Reevaluation of the Proton Affinity Difference Between 2-Methylpropene and Ammonia,
Int. J. Mass Spectrom. Ion Proc., 1991, 109, 279, https://doi.org/10.1016/0168-1176(91)85109-Y
. [all data]
Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B.,
Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements,
J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016
. [all data]
Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P.,
Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding,
J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002
. [all data]
Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D.,
Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules,
J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]
Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr.,
Thermochemical data on Ggs-phase ion-molecule association and clustering reactions,
J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]
Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E.,
A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase,
Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]
Meot-Ner, 1984
Meot-Ner, (Mautner)M.,
The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects,
J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015
. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria,
J. Am. Chem. Soc., 1984, 106, 517. [all data]
Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B.,
Gas phase negative ion chemistry of alkylchloroformates,
Can. J. Chem., 1984, 62, 675. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T.,
The gas phase acidity of aliphatic alcohols,
J. Am. Chem. Soc., 1983, 105, 2203. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Zimmerman, Reed, et al., 1977
Zimmerman, A.H.; Reed, K.J.; Brauman, J.I.,
Photodetachment of electrons from enolate anions. Gas phase electron affinities of enolate radicals,
J. Am. Chem. Soc., 1977, 99, 7203. [all data]
Meot-Ner (Mautner), 1983
Meot-Ner (Mautner), M.,
The Ionic Hydrogen Bond. 3. Multiple and -CH+...O- Bonds. Complexes of Ammonium Ions with Polyethers and Crown Ethers,
J. Am. Chem. Soc., 1983, 105, 15, 4912, https://doi.org/10.1021/ja00353a012
. [all data]
Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S.,
Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes,
J. Am. Chem. Soc., 1981, 103, 2791. [all data]
Farid and McMahon, 1978
Farid, R.; McMahon, T.B.,
Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy,
Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0
. [all data]
Buckley and Herington, 1965
Buckley, E.; Herington, E.F.G.,
Equilibria in some secondary alcohol + hydrogen + ketone systems,
Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.