Benzene, 1,2,4-trimethyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-14.79 ± 0.27kcal/molCcbJohnson, Prosen, et al., 1945Hf by Prosen, Johnson, et al., 1946; ALS
Quantity Value Units Method Reference Comment
Δcliquid-1241.58 ± 0.24kcal/molCcbJohnson, Prosen, et al., 1945Hf by Prosen, Johnson, et al., 1946; Corresponding Δfliquid = -14.77 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1240.6kcal/molCcbRichards and Barry, 1915At 291 K; Corresponding Δfliquid = -15.8 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid67.729cal/mol*KN/APutnam and Kilpatrick, 1957DH
liquid67.71cal/mol*KN/AHuffman, Parks, et al., 1931Extrapolation below 90 K, 69.79 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
50.935298.15Wilhelm, Inglese, et al., 1987DH
50.69295.99Andolenko and Grigor'ev, 1979T = 293 to 430 K. Unsmoothed experimental datum given as 1.765 kJ/kg*K.; DH
51.379298.15Putnam and Kilpatrick, 1957T = 15 to 300 K.; DH
50.289299.8Helfrey, Heiser, et al., 1955T = 80 to 220°F.; DH
50.91298.Kurbatov, 1947T = 15 to 168°C, mean Cp, five temperatures.; DH
50.69297.3Huffman, Parks, et al., 1931T = 94 to 297 K. Value is unsmoothed experimental datum.; DH

Mass spectrum (electron ionization)

Go To: Top, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1990.
NIST MS number 114280

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Condensed phase thermochemistry data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Johnson, Prosen, et al., 1945
Johnson, W.H.; Prosen, E.J.; Rossini, F.D., Heats of combustion and isomerization of the eight C9H12 alkylbenzenes, J. Res. NBS, 1945, 35, 141-146. [all data]

Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D., Heats of combustion and formation at 25°C of the alkylbenzenes through C10H14, and of the higher normal monoalkylbenzenes, J. Res. NBS, 1946, 36, 455-461. [all data]

Richards and Barry, 1915
Richards, T.W.; Barry, F., The heats of combustion of aromatic hydrocarbons and hexamethylene, J. Am. Chem. Soc., 1915, 37, 993-1020. [all data]

Putnam and Kilpatrick, 1957
Putnam, W.E.; Kilpatrick, J.E., Entropy, heat capacity and heats of transition of 1,2,4-trimethylbenzene, J. Chem. Phys., 1957, 27, 1075-1080. [all data]

Huffman, Parks, et al., 1931
Huffman, H.M.; Parks, G.S.; Barmore, M., Thermal data on organic compounds. X. Further studies on the heat capacities, entropies and free energies of hydrocarbons, J. Am. Chem. Soc., 1931, 53, 3876-3888. [all data]

Wilhelm, Inglese, et al., 1987
Wilhelm, E.; Inglese, A.; Roux, A.H.; Grolier, J.-P.E., Excess enthalpy, excess heat capacity and excess volume of 1,2,4-trimethylbenzene +, and 1-methylnaphthalene + an n-alkane, Fluid Phase Equilibria, 1987, 34, 49-67. [all data]

Andolenko and Grigor'ev, 1979
Andolenko, R.A.; Grigor'ev, B.A., Investigation of isobaric heat capacity of aromatic hydrocarbons at atmospheric pressure, Iaz. Vyssh. Ucheb. Zaved., Neft i Gaz (11), 1979, 78, 90. [all data]

Helfrey, Heiser, et al., 1955
Helfrey, P.F.; Heiser, D.A.; Sage, B.H., Isobaric heat capacities at bubble point, Two trimethylbenzenes and n-heptane, Ind. Eng. Chem., 1955, 44, 2385-2388. [all data]

Kurbatov, 1947
Kurbatov, V.Ya., Specific heat of liquids. I. Specific heat of benzenoid hydrocarbons, Zhur. Obshch. Khim., 1947, 17, 1999-2003. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Mass spectrum (electron ionization), References