p-Terphenyl
- Formula: C18H14
- Molecular weight: 230.3038
- IUPAC Standard InChIKey: XJKSTNDFUHDPQJ-UHFFFAOYSA-N
- CAS Registry Number: 92-94-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: 1,1':4',1''-Terphenyl; p-Diphenylbenzene; p-Triphenyl; Santowax P; 1,1'-Biphenyl, 4-phenyl-; 1,4-Diphenylbenzene; 4-Phenylbiphenyl; 4-Phenyldiphenyl; Biphenyl, 4-phenyl-; NSC 6810; PT; PTP
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 67.97 ± 0.91 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔfH°gas | 66.6 ± 1.5 | kcal/mol | Ccb | Balepin, Lebedev, et al., 1977 | ALS |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°solid | 37.95 ± 0.81 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔfH°solid | 38.9 ± 1.1 | kcal/mol | Ccb | Balepin, Lebedev, et al., 1977 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -2210.0 ± 1.1 | kcal/mol | Ccb | Balepin, Lebedev, et al., 1977 | Corresponding ΔfHºsolid = 38.9 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 68.172 | cal/mol*K | N/A | Saito, Atake, et al., 1988 | crystaline, I phase; DH |
S°solid,1 bar | 68.265 | cal/mol*K | N/A | Chang, 1983 | DH |
Constant pressure heat capacity of solid
Cp,solid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
66.472 | 298.15 | Saito, Atake, et al., 1988 | crystaline, I phase; T = 5 to 300 K.; DH |
66.606 | 298.15 | Chang, 1983 | T = 4 to 580 K. Cp = 35.12 + 0.58825T + 0.0010062T2 - 8.042x10-7T3 from 80 to 300 K.; DH |
62.1 | 300. | Wasicki, Radomska, et al., 1982 | T = 180 to 500 K. Data given graphically. Value estimated from graph.; DH |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y.,
Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,
J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]
Balepin, Lebedev, et al., 1977
Balepin, A.A.; Lebedev, V.P.; Miroshnichenko, E.A.; Koldobskii, G.I.; Ostovskii, V.A.; Larionov, B.P.; Gidaspov, B.V.; Lebedev, Yu.A.,
Energy effects in polyphenylenes and phenyltetrazoles,
Svoistva Veshchestv Str. Mol., 1977, 93-98. [all data]
Saito, Atake, et al., 1988
Saito, K.; Atake, T.; Chihara, H.,
Thermodynamic studies on order-disorder phase transitions of p-terphenyl and p-terphenyl-d14,
Bull. Chem. Soc. Japan, 1988, 61, 2327-2336. [all data]
Chang, 1983
Chang, S.S.,
Heat capacity and thermodynamic properties of p-terphenyl: study of order-disorder transition by automated high-resolution adiabatic calorimetry,
J. Chem. Phys., 1983, 79, 6229-6236. [all data]
Wasicki, Radomska, et al., 1982
Wasicki, J.; Radomska, M.; Radomski, R.,
Heat capacities of diphenyl, p-terphenyl and p-quaterphenyl from 180 K to their melting points,
J. Therm. Anal., 1982, 25, 509-514. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References
- Symbols used in this document:
Cp,solid Constant pressure heat capacity of solid S°solid,1 bar Entropy of solid at standard conditions (1 bar) ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.