Benzene, 1-chloro-2-nitro-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfsolid-7.87kcal/molCcbMasalitinova, Oleinikova, et al., 1981 
Quantity Value Units Method Reference Comment
Δcsolid-698.68 ± 0.60kcal/molCcbMasalitinova, Oleinikova, et al., 1981 

Phase change data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil519.2KN/AWeast and Grasselli, 1989BS
Tboil519.15KN/ALecat, 1947Uncertainty assigned by TRC = 0.6 K; TRC
Quantity Value Units Method Reference Comment
Tfus305.28KN/AWitschonke, 1954Uncertainty assigned by TRC = 0.07 K; TRC
Tfus305.28KN/AWitschonke, 1954Uncertainty assigned by TRC = 0.05 K; TRC
Tfus306.KN/ATimmermans, 1935Uncertainty assigned by TRC = 1.5 K; TRC
Tfus305.15KN/ACauwood and Turner, 1915Uncertainty assigned by TRC = 0.15 K; TRC
Tfus305.7KN/ABuechner, 1906Uncertainty assigned by TRC = 1.5 K; TRC
Quantity Value Units Method Reference Comment
Δvap14.4 ± 0.07kcal/molGSVerevkin and Schick, 2003Based on data from 307. to 334. K.; AC
Quantity Value Units Method Reference Comment
Δsub19.3 ± 0.36kcal/molCRibeiro da Silva, Lobo Ferreira, et al., 2009AC
Δsub19.3 ± 0.07kcal/molGSVerevkin and Schick, 2003Based on data from 278. to 305. K.; AC

Reduced pressure boiling point

Tboil (K) Pressure (atm) Reference Comment
392.20.01Weast and Grasselli, 1989BS

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
12.5435.EBPutcha, Ivaturi, et al., 1984Based on data from 420. to 516. K.; AC

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
4.328305.8Straka, Ruzicka, et al., 2007AC
4.352305.8Verevkin and Schick, 2003AC
4.560308.2Masalitinova, Oleinikova, et al., 1981, 2AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Bromine anion + Benzene, 1-chloro-2-nitro- = (Bromine anion • Benzene, 1-chloro-2-nitro-)

By formula: Br- + C6H4ClNO2 = (Br- • C6H4ClNO2)

Quantity Value Units Method Reference Comment
Δr17.1 ± 1.8kcal/molIMREPaul and Kebarle, 1991gas phase; ΔGaff at 423 K, ΔSaff taken as that of mCF3-nitrobenzene..Br-; B,M
Quantity Value Units Method Reference Comment
Δr22.cal/mol*KN/APaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr7.7 ± 1.0kcal/molIMREPaul and Kebarle, 1991gas phase; ΔGaff at 423 K, ΔSaff taken as that of mCF3-nitrobenzene..Br-; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
7.7423.PHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M

Gas phase ion energetics data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Electron affinity determinations

EA (eV) Method Reference Comment
1.16 ± 0.10IMREChowdhury, Heinis, et al., 1986ΔGea(423 K) = -25.7 kcal/mol; ΔSea (estimated) = -1.6 eu.
1.114 ± 0.048IMREFukuda and McIver, 1985ΔGea(355 K) = -25.1 kcal/mol; ΔSea =-1.6, est. from data in Chowdhury, Heinis, et al., 1986
<1.340 ± 0.050PDMock and Grimsrud, 1989 

Ion clustering data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Bromine anion + Benzene, 1-chloro-2-nitro- = (Bromine anion • Benzene, 1-chloro-2-nitro-)

By formula: Br- + C6H4ClNO2 = (Br- • C6H4ClNO2)

Quantity Value Units Method Reference Comment
Δr17.1 ± 1.8kcal/molIMREPaul and Kebarle, 1991gas phase; ΔGaff at 423 K, ΔSaff taken as that of mCF3-nitrobenzene..Br-; B,M
Quantity Value Units Method Reference Comment
Δr22.cal/mol*KN/APaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr7.7 ± 1.0kcal/molIMREPaul and Kebarle, 1991gas phase; ΔGaff at 423 K, ΔSaff taken as that of mCF3-nitrobenzene..Br-; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
7.7423.PHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M

IR Spectrum

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Sadtler Research Labs Under US-EPA Contract
State gas

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


References

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Masalitinova, Oleinikova, et al., 1981
Masalitinova, T.N.; Oleinikova, T.P.; Ryadnenko, V.L.; Kiseleva, N.N.; Lebedeva, N.D., Thermal effects of the hydrogenation of chloronitrobenzenes, J. Appl. Chem. USSR, 1981, 54, 1551-1554, In original 1799. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Lecat, 1947
Lecat, M., Some azeotropes of which one constituant is heterocyclic nitrogen, Ann. Soc. Sci. Bruxelles, Ser. 1, 1947, 61, 73. [all data]

Witschonke, 1954
Witschonke, C.R., Freezing point and purity data for some organic compounds, Anal. Chem., 1954, 26, 562-4. [all data]

Timmermans, 1935
Timmermans, J., Researches in Stoichiometry. I. The Heat of Fusion of Organic Compounds., Bull. Soc. Chim. Belg., 1935, 44, 17-40. [all data]

Cauwood and Turner, 1915
Cauwood, J.D.; Turner, W.E.S., XXXI. The Dielectric Constants of Some Organic Solvents at their Melting or Boiling Points, J. Chem. Soc., Trans., 1915, 107, 276. [all data]

Buechner, 1906
Buechner, E.H., Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1906, 54, 665. [all data]

Verevkin and Schick, 2003
Verevkin, Sergey P.; Schick, Christoph, Determination of vapor pressures, enthalpies of sublimation, enthalpies of vaporization, and enthalpies of fusion of a series of chloro-aminobenzenes and chloro-nitrobenzenes, Fluid Phase Equilibria, 2003, 211, 2, 161-177, https://doi.org/10.1016/S0378-3812(03)00181-X . [all data]

Ribeiro da Silva, Lobo Ferreira, et al., 2009
Ribeiro da Silva, Manuel A.V.; Lobo Ferreira, Ana I.M.C.; Moreno, Ana Rita G., Experimental thermochemical study of the monochloronitrobenzene isomers, The Journal of Chemical Thermodynamics, 2009, 41, 1, 109-114, https://doi.org/10.1016/j.jct.2008.07.012 . [all data]

Putcha, Ivaturi, et al., 1984
Putcha, Sivaram; Ivaturi, Rao V.; Machiraju, Ramakrishna, Vapor pressures of o-and m-nitrochlorobenzene, J. Chem. Eng. Data, 1984, 29, 2, 135-136, https://doi.org/10.1021/je00036a011 . [all data]

Straka, Ruzicka, et al., 2007
Straka, Martin; Ruzicka, Kvetoslav; Ruzicka, Vlastimil, Heat Capacities of Chloroanilines and Chloronitrobenzenes, J. Chem. Eng. Data, 2007, 52, 4, 1375-1380, https://doi.org/10.1021/je700080k . [all data]

Masalitinova, Oleinikova, et al., 1981, 2
Masalitinova, T.N.; Oleinikova, T.P.; Ryadnenko, V.L.; Kiseleva, N.N.; Lebedeva, N.D., Zh. Prikl. Khim. (Leningrad), 1981, 54, 1799. [all data]

Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P., Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-, J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014 . [all data]

Chowdhury, Heinis, et al., 1986
Chowdhury, S.; Heinis, T.; Grimsrud, E.P.; Kebarle, P., Entropy Changes and Electron Affinities from Gas-Phase Electron Transfer Equilibria: A- + B = A + B-, J. Phys. Chem., 1986, 90, 12, 2747, https://doi.org/10.1021/j100403a037 . [all data]

Fukuda and McIver, 1985
Fukuda, E.K.; McIver, R.T., Jr., Relative electron affinities of substituted benzophenones, nitrobenzenes, and quinones. [Anchored to EA(SO2) from 74CEL/BEN], J. Am. Chem. Soc., 1985, 107, 2291. [all data]

Mock and Grimsrud, 1989
Mock, R.S.; Grimsrud, E.P., Gas-Phase Electron Photodetachment Spectroscopy of the Molecular Anions of Nitroaromatic Hydrocarbons at Atmospheric Pressure, J. Am. Chem. Soc., 1989, 111, 8, 2861, https://doi.org/10.1021/ja00190a020 . [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References