Benzene, 1,2,3-trichloro-
- Formula: C6H3Cl3
- Molecular weight: 181.447
- IUPAC Standard InChIKey: RELMFMZEBKVZJC-UHFFFAOYSA-N
- CAS Registry Number: 87-61-6
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Vic-Trichlorobenzene; 1,2,3-Trichlorobenzene; 1,2,6-Trichlorobenzene; UN 2321
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Phase change data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 491.7 | K | N/A | Weast and Grasselli, 1989 | BS |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 323.75 | K | N/A | Donnelly, Drewes, et al., 1990 | Uncertainty assigned by TRC = 0.2 K; TRC |
Tfus | 325.8 | K | N/A | Miller, Ghodbane, et al., 1984 | Uncertainty assigned by TRC = 0.2 K; TRC |
Tfus | 326.9 | K | N/A | Plato and Glasgow, 1969 | Uncertainty assigned by TRC = 0.1 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 13.7 | kcal/mol | GC | Spieksma, Luijk, et al., 1994 | Based on data from 413. to 453. K.; AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 17.96 ± 0.18 | kcal/mol | C | Yan, Gu, et al., 1987 | ALS |
ΔsubH° | 17.9 ± 0.18 | kcal/mol | N/A | Yan, Gu, et al., 1985 | See also Yan, Gu, et al., 1987, 2.; AC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
13.0 | 325. | N/A | Rohác, Ruzicka, et al., 1999 | AC |
13.0 | 258. to 313. | GC | Liu and Dickhut, 1994 | AC |
12.8 | 308. | A | Stephenson and Malanowski, 1987 | Based on data from 293. to 383. K.; AC |
11.3 | 328. | A | Stephenson and Malanowski, 1987 | Based on data from 313. to 492. K. See also Stull, 1947.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
313. to 491.7 | 5.23017 | 2634.014 | 11.767 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
17.4 | 258. to 313. | N/A | Liu and Dickhut, 1994 | AC |
15.7 | 296. | RG | Sears and Hopke, 1949 | Based on data from 289. to 303. K. See also Jones, 1960.; AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
4.90 | 326.9 | N/A | Acree, 1991 | AC |
4.123 | 322.9 | DSC | Donnelly, Drewes, et al., 1990, 2 | AC |
References
Go To: Top, Phase change data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Donnelly, Drewes, et al., 1990
Donnelly, J.R.; Drewes, L.A.; Johnson, R.L.; Munslow, W.D.; Knapp, K.K.; Sovocool, G.W.,
Purity and heat of fusion data for environmental standards as determined by differential scanning calorimetry,
Thermochim. Acta, 1990, 167, 2, 155, https://doi.org/10.1016/0040-6031(90)80476-F
. [all data]
Miller, Ghodbane, et al., 1984
Miller, M.M.; Ghodbane, S.; Wasik, S.P.; Tewari, Y.B.; Martire, D.E.,
Aqueous Solubilities, Octanol/Water Partition Coefficients, and Entropies of Melting of Chlorinated Benzenes and Biphenyls,
J. Chem. Eng. Data, 1984, 29, 184-190. [all data]
Plato and Glasgow, 1969
Plato, C.; Glasgow, A.R., Jr.,
Differential scanning calorimetry as a general method for determining the purity and heat of fusion of high-purity organic chemicals. Application to 95 compounds,
Anal. Chem., 1969, 41, 2, 330, https://doi.org/10.1021/ac60271a041
. [all data]
Spieksma, Luijk, et al., 1994
Spieksma, Walter; Luijk, Ronald; Govers, Harrie A.J.,
Determination of the liquid vapour pressure of low-volatility compounds from the Kováts retention index,
Journal of Chromatography A, 1994, 672, 1-2, 141-148, https://doi.org/10.1016/0021-9673(94)80602-0
. [all data]
Yan, Gu, et al., 1987
Yan, H.; Gu, J.; An, X.; Hu, R.,
Standard enthalpies of formation and enthlpies of isomerization of trichlorobenzenes,
Huaxue Xuebao, 1987, 45, 1184-1187. [all data]
Yan, Gu, et al., 1985
Yan, Haike; Gu, Jiangou; Hu, Rihen,
Sublimation Calorimeter and the Measurement of Enthalpies of Vaporization and Sublimation of Trichlorobenzenes,
Acta Phys. Chim. Sin., 1985, 1, 6, 543-546, https://doi.org/10.3866/PKU.WHXB19850607
. [all data]
Yan, Gu, et al., 1987, 2
Yan, H.; Gu, J.; An, X.; Hu, R.-H.,
Huaxue Xuebao, 1987, 45, 1184. [all data]
Rohác, Ruzicka, et al., 1999
Rohác, Vladislav; Ruzicka, Vlastimil; Ruzicka, Kvetoslav; Polednicek, Milos; Aim, Karel; Jose, Jacques; Zábranský, Milan,
Recommended vapour and sublimation pressures and related thermal data for chlorobenzenes,
Fluid Phase Equilibria, 1999, 157, 1, 121-142, https://doi.org/10.1016/S0378-3812(99)00003-5
. [all data]
Liu and Dickhut, 1994
Liu, Kewen; Dickhut, Rebecca M.,
Saturation vapor pressures and thermodynamic properties of benzene and selected chlorinated benzenes at environmental temperatures,
Chemosphere, 1994, 29, 3, 581-589, https://doi.org/10.1016/0045-6535(94)90445-6
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Sears and Hopke, 1949
Sears, G.W.; Hopke, E.R.,
Vapor Pressures of the Isomeric Trichlorobenzenes in the Low Pressure Region,
J. Am. Chem. Soc., 1949, 71, 7, 2575-2576, https://doi.org/10.1021/ja01175a094
. [all data]
Jones, 1960
Jones, A.H.,
Sublimation Pressure Data for Organic Compounds.,
J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019
. [all data]
Acree, 1991
Acree, William E.,
Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation,
Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H
. [all data]
Donnelly, Drewes, et al., 1990, 2
Donnelly, J.R.; Drewes, L.A.; Johnson, R.L.; Munslow, W.D.; Knapp, K.K.; Sovocool, G.W.,
Purity and heat of fusion data for environmental standards as determined by differential scanning calorimetry,
Thermochimica Acta, 1990, 167, 2, 155-187, https://doi.org/10.1016/0040-6031(90)80476-F
. [all data]
Notes
Go To: Top, Phase change data, References
- Symbols used in this document:
Tboil Boiling point Tfus Fusion (melting) point ΔfusH Enthalpy of fusion ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.