2,4(1H,3H)-Pyrimidinedione, 1,3-dimethyl-
- Formula: C6H8N2O2
- Molecular weight: 140.1399
- IUPAC Standard InChIKey: JSDBKAHWADVXFU-UHFFFAOYSA-N
- CAS Registry Number: 874-14-6
- Chemical structure:
This structure is also available as a 2d Mol file - Other names: Uracil, 1,3-dimethyl-; N,N'-Dimethyluracil; N1,N3-Dimethyluracil; 1,3-Dimethyluracil; 2,4-Dihydroxy-1,3-dimethylpyrimidine
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -313.6 ± 1.5 | kJ/mol | Ccr | Imamura, Takahashi, et al., 1989 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°solid | -410.5 ± 0.9 | kJ/mol | Ccr | Imamura, Takahashi, et al., 1989 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -3093.87 ± 0.29 | kJ/mol | Ccr | Imamura, Takahashi, et al., 1989 | ALS |
Constant pressure heat capacity of solid
Cp,solid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
170. | 298.15 | Imamura, Takahashi, et al., 1989 | One temperature, estimated.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tfus | 392.5 | K | N/A | Zielenkiewicz, Zielenkiewicz, et al., 1984 | Uncertainty assigned by TRC = 0.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 71. ± 3. | kJ/mol | V | Beak and White, 1982 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 96.9 ± 1.2 | kJ/mol | C | Imamura, Takahashi, et al., 1989 | ALS |
ΔsubH° | 96.4 ± 1.4 | kJ/mol | C | Murata, Sakiyama, et al., 1985 | AC |
ΔsubH° | 92. | kJ/mol | V | Clark, Peschel, et al., 1965 | ALS |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
96.900 | 298.15 | N/A | Imamura, Takahashi, et al., 1989 | DH |
115.8 ± 3.0 | 338. | TE | Brunetti, Piacente, et al., 2000 | Based on data from 311. to 367. K.; AC |
101.7 ± 2.1 | 338. | QR | Teplitsky, Yanson, et al., 1980 | Based on data from 313. to 363. K.; AC |
46. ± 4.2 | 426. | HAS | Nowak, Szczepaniak, et al., 1978 | Based on data from 400. to 454. K.; AC |
92. | 344. to 370. | HAS | Clark, Peschel, et al., 1965, 2 | AC |
Entropy of sublimation
ΔsubS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
325.0 | 298.15 | Imamura, Takahashi, et al., 1989 | DH |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
23.100 | 392.5 | Zielenkiewicz, Zielenkiewicz, et al., 1984, 2 | DH |
14.6 | 398. | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
58.9 | 392.5 | Zielenkiewicz, Zielenkiewicz, et al., 1984, 2 | DH |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
18.400 | 394. | crystaline, II | liquid | Sakiyama and Imamura, 1989 | Melting of the metastable phase.; DH |
14.600 | 398. | crystaline, I | liquid | Sakiyama and Imamura, 1989 | Melting of the stable phase.; DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C6H7N2O2- + =
By formula: C6H7N2O2- + H+ = C6H8N2O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1544. ± 8.4 | kJ/mol | IMRB | Lee, 2005 | gas phase; B |
ΔrH° | 1551. ± 13. | kJ/mol | G+TS | Gronert, Feng, et al., 2000 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1519. ± 13. | kJ/mol | IMRB | Gronert, Feng, et al., 2000 | gas phase; B |
By formula: C6H8N2O2 = C6H8N2O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -180. ± 13. | kJ/mol | Ciso | Beak and White, 1982 | liquid phase; ALS |
ΔrH° | -160. ± 20. | kJ/mol | Ciso | Beak and White, 1982 | gas phase; ALS |
By formula: C6H8N2O2 = C6H8N2O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -104. ± 5.4 | kJ/mol | Ciso | Beak and White, 1982 | liquid phase; ALS |
ΔrH° | -110. ± 17. | kJ/mol | Ciso | Beak and White, 1982 | gas phase; ALS |
C6H7N2O2- + =
By formula: C6H7N2O2- + H+ = C6H8N2O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1607. ± 13. | kJ/mol | IMRB | Lee, 2005 | gas phase; B |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Imamura, Takahashi, et al., 1989
Imamura, A.; Takahashi, K.; Murata, S.; Sakiyama, M.,
Standard enthalpies of formation of trimethyl cyanurate, malonamide, and 1,3-dimethyluracil,
J. Chem. Thermodyn., 1989, 21, 237-246. [all data]
Zielenkiewicz, Zielenkiewicz, et al., 1984
Zielenkiewicz, A.; Zielenkiewicz, W.; Malanowski, S.,
Thermodynamic Excess Functions of Dilute Aqueous Solutions of Alkylated Pyrimidines and Aminopurines and Caffeine,
Thermochim. Acta, 1984, 74, 95. [all data]
Beak and White, 1982
Beak, P.; White, J.M.,
Relative enthalpies of 1,3-dimethyl-2,4-pyrimidinedione, 2,4-dimethoxypyrimidine, and 4-methoxy-1-methyl-2-pyrimidinone: estimation of the relative stabilities of two protomers of uracil,
J. Am. Chem. Soc., 1982, 104, 7073-7077. [all data]
Murata, Sakiyama, et al., 1985
Murata, S.; Sakiyama, M.; Seki, S.,
Sublimation calorimetric studies using a calvet microcalorimeter,
Thermochimica Acta, 1985, 88, 1, 121-126, https://doi.org/10.1016/0040-6031(85)85419-8
. [all data]
Clark, Peschel, et al., 1965
Clark, L.B.; Peschel, G.G.; Tinoco, I., Jr.,
Vapor spectra and heats of vaporization of some purine and pyrmidine bases,
J. Phys. Chem., 1965, 69, 3615. [all data]
Brunetti, Piacente, et al., 2000
Brunetti, Bruno; Piacente, Vincenzo; Portalone, Gustavo,
Sublimation Enthalpies of Some Methyl Derivatives of Uracil from Vapor Pressure Measurements,
J. Chem. Eng. Data, 2000, 45, 2, 242-246, https://doi.org/10.1021/je9902802
. [all data]
Teplitsky, Yanson, et al., 1980
Teplitsky, A.B.; Yanson, I.K.; Glukhova, O.T.; Zielenkiwicz, A.; Zielenkiewicz, W.; Wierzchowski, K.L.,
Thermochemistry of aqueous solutions of alkylated nucleic acid bases,
Biophysical Chemistry, 1980, 11, 1, 17-21, https://doi.org/10.1016/0301-4622(80)85003-4
. [all data]
Nowak, Szczepaniak, et al., 1978
Nowak, M.J.; Szczepaniak, K.; Barski, A.; Shugar, D.Z.,
Z. Naturforsch. C, 1978, 33C, 876. [all data]
Clark, Peschel, et al., 1965, 2
Clark, L.B.; Peschel, G.G.; Tinoco, I., Jr.,
Vapor spectra and heats of vaporization of some purine and pyrimidine bases,
Not In System, 1965, 3615-3618. [all data]
Zielenkiewicz, Zielenkiewicz, et al., 1984, 2
Zielenkiewicz, A.; Zielenkiewicz, W.; Malanowski, S.,
Thermodynamic excess functions of diluted aqueous solutions of alkylated pyrimidines and amino purines, and caffeine,
Thermochim. Acta, 1984, 74, 95-111. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Sakiyama and Imamura, 1989
Sakiyama, M.; Imamura, A.,
Thermoanalytical characterization of 1,3-dimethyluracil and malonamide crystals,
Thermochim. Acta, 1989, 142(2), 365-370. [all data]
Lee, 2005
Lee, J.K.,
Insights into nucleic acid reactivity through gas-phase experimental and computational studies,
Int. J. Mass Spectrom., 2005, 240, 3, 261-272, https://doi.org/10.1016/j.ijms.2004.09.020
. [all data]
Gronert, Feng, et al., 2000
Gronert, S.; Feng, W.Y.; Chew, F.; Wu, W.M.,
The gas phase acid/base properties of 1,3,-dimethyluracil, 1-methyl-2-pyridone, and 1-methyl-4-pyridone: relevance to the mechanism of orotidine-5 '-monophosphate decarboxylase,
Int. J. Mass Spectrom., 2000, 196, 251-258, https://doi.org/10.1016/S1387-3806(99)00191-8
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References
- Symbols used in this document:
Cp,solid Constant pressure heat capacity of solid Tfus Fusion (melting) point ΔHtrs Enthalpy of phase transition ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔsubS Entropy of sublimation ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.