Phenanthrene
- Formula: C14H10
- Molecular weight: 178.2292
- IUPAC Standard InChIKey: YNPNZTXNASCQKK-UHFFFAOYSA-N
- CAS Registry Number: 85-01-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Phenanthren; Phenanthrin; Phenantrin
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 202.2 ± 2.3 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB |
ΔfH°gas | 201.2 ± 4.7 | kJ/mol | Ccb | Steele, Chirico, et al., 1990 | Δ Hfusion = 15.96±0.05 kJ/mol; ALS |
ΔfH°gas | 206.9 ± 4.6 | kJ/mol | Ccb | Coleman and Pilcher, 1966 | Author was aware that data differs from previously reported values; ALS |
ΔfH°gas | 203.8 | kJ/mol | N/A | Bender and Farber, 1952 | Value computed using ΔfHsolid° value of 113.0 kj/mol from Bender and Farber, 1952 and ΔsubH° value of 90.8 kj/mol from Bender and Farber, 1952.; DRB |
ΔfH°gas | 163.6 | kJ/mol | N/A | Richardson and Parks, 1939 | Value computed using ΔfHsolid° value of 72.8±2.6 kj/mol from Richardson and Parks, 1939 and ΔsubH° value of 90.8 kj/mol from Richardson and Parks, 1939.; DRB |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
41.35 | 50. | Dorofeeva O.V., 1988 | These functions are also reproduced in the reference book [ Frenkel M., 1994]. Recommended values of S(T) and Cp(T) agree with those calculated by [ Kudchadker S.A., 1979] within 1.3 J/mol*K.; GT |
62.23 | 100. | ||
88.70 | 150. | ||
119.57 | 200. | ||
168.72 | 273.15 | ||
185.7 ± 1.0 | 298.15 | ||
186.91 | 300. | ||
250.42 | 400. | ||
303.40 | 500. | ||
345.75 | 600. | ||
379.61 | 700. | ||
407.06 | 800. | ||
429.65 | 900. | ||
448.46 | 1000. | ||
464.28 | 1100. | ||
477.68 | 1200. | ||
489.09 | 1300. | ||
498.87 | 1400. | ||
507.29 | 1500. |
References
Go To: Top, Gas phase thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y.,
Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,
J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]
Steele, Chirico, et al., 1990
Steele, W.V.; Chirico, R.D.; Nguyen, A.; Hossenlopp, I.A.; Smith, N.K.,
Determination of ideal-gas enthalpies of formation for key compounds,
Am. Inst. Chem. Eng. Symp. Ser. (AIChE Symp. Ser.), 1990, 138-154. [all data]
Coleman and Pilcher, 1966
Coleman, D.J.; Pilcher, G.,
Heats of combustion of biphenyl, bibenzyl, naphthalene, anthracene, and phenanthrene,
Trans. Faraday Soc., 1966, 62, 821-827. [all data]
Bender and Farber, 1952
Bender, P.; Farber, J.,
The heats of combustion of anthracene transannular peroxide and dianthracene,
J. Am. Chem. Soc., 1952, 74, 1450-1452. [all data]
Richardson and Parks, 1939
Richardson, J.W.; Parks, G.S.,
Thermal data on organic compounds. XIX. Modern combustion data for some non-volatile compounds containing carbon, hydrogen and oxygen,
J. Am. Chem. Soc., 1939, 61, 3543-3546. [all data]
Dorofeeva O.V., 1988
Dorofeeva O.V.,
Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons in the Gaseous Phase. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-238 (in Russian), Moscow, 1988. [all data]
Frenkel M., 1994
Frenkel M.,
Thermodynamics of Organic Compounds in the Gas State, Vol. I, II, Thermodynamics Research Center, College Station, Texas, 1994, 1994. [all data]
Kudchadker S.A., 1979
Kudchadker S.A.,
Chemical thermodynamic properties of anthracene and phenathrene,
J. Chem. Thermodyn., 1979, 11, 1051-1059. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas ΔfH°gas Enthalpy of formation of gas at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.