Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

2-Butanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C4H9O- + Hydrogen cation = 2-Butanol

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Deltar1565. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Deltar1566. ± 8.8kJ/molG+TSTaft, 1987gas phase; value altered from reference due to change in acidity scale; B
Deltar1565. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Deltar1538. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Deltar1538. ± 8.4kJ/molIMRETaft, 1987gas phase; value altered from reference due to change in acidity scale; B
Deltar1538. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B

Hydrogen + 2-Butanone = 2-Butanol

By formula: H2 + C4H8O = C4H10O

Quantity Value Units Method Reference Comment
Deltar-54.18kJ/molEqkBuckley and Herington, 1965gas phase; ALS
Deltar-54.3 ± 0.4kJ/molChydDolliver, Gresham, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -55.2 ± 0.4 kJ/mol; At 355 °K; ALS

2-Butanol = Hydrogen + 2-Butanone

By formula: C4H10O = H2 + C4H8O

Quantity Value Units Method Reference Comment
Deltar54.22kJ/molEqkCubberley and Mueller, 1946gas phase; ALS
Deltar57.170kJ/molEqkKolb and Burwell, 1945gas phase; ALS

1-Propene, 2-methyl- + 2-Butanol = 2-(tert-butoxy)butane

By formula: C4H8 + C4H10O = C8H18O

Quantity Value Units Method Reference Comment
Deltar-37.7 ± 2.4kJ/molEqkSharonov, Mishentseva, et al., 1991liquid phase; ALS

Ketene + 2-Butanol = sec-Butyl acetate

By formula: C2H2O + C4H10O = C6H12O2

Quantity Value Units Method Reference Comment
Deltar-144.5kJ/molCmRice and Greenberg, 1934liquid phase; ALS

Sodium ion (1+) + 2-Butanol = (Sodium ion (1+) bullet 2-Butanol)

By formula: Na+ + C4H10O = (Na+ bullet C4H10O)

Quantity Value Units Method Reference Comment
Deltar117. ± 5.0kJ/molCIDTRodgers and Armentrout, 1999RCD

Lithium ion (1+) + 2-Butanol = (Lithium ion (1+) bullet 2-Butanol)

By formula: Li+ + C4H10O = (Li+ bullet C4H10O)

Quantity Value Units Method Reference Comment
Deltar174. ± 9.2kJ/molCIDTRodgers and Armentrout, 2000RCD

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Taft, 1987
Taft, R.W., The Nature and Analysis of Substitutent Electronic Effects, Personal communication. See also Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]

Buckley and Herington, 1965
Buckley, E.; Herington, E.F.G., Equilibria in some secondary alcohol + hydrogen + ketone systems, Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]

Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds, J. Am. Chem. Soc., 1938, 60, 440-450. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Cubberley and Mueller, 1946
Cubberley, A.H.; Mueller, M.B., Equilibrium studies on the dehydrogenation of primary and secondary alcohols. I. 2-Butanol, 2-octanol, cyclopentanol and benzyl alcohol, J. Am. Chem. Soc., 1946, 68, 1149-1151. [all data]

Kolb and Burwell, 1945
Kolb, H.J.; Burwell, R.L., Jr., Equilibrium in the dehydrogenation of secondary propyl and butyl alcohols, J. Am. Chem. Soc., 1945, 67, 1084-1088. [all data]

Sharonov, Mishentseva, et al., 1991
Sharonov, K.G.; Mishentseva, Y.B.; Rozhnov, A.M.; Miroshnichenko, E.A.; Korchatova, L.I., Molar enthalpies of formation and vaporizqation of t-butoxybutanes and thermodynamics of their synthesis from a butanol and 2-methylpropene I. Equilibria of synthesis reactions of t-butoxybutanes in the liquid phase, J. Chem. Thermodyn., 1991, 23, 141-145. [all data]

Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J., Ketene. III. Heat of formation and heat of reaction with alcohols, J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]

Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B., Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]


Notes

Go To: Top, Reaction thermochemistry data, References