2-Butanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-70.05kcal/molN/AChao and Rossini, 1965Value computed using ΔfHliquid° value of -342.7±0.6 kj/mol from Chao and Rossini, 1965 and ΔvapH° value of 49.6 kj/mol from Skinner and Snelson, 1960.; DRB
Δfgas-70.1 ± 0.35kcal/molCcbSkinner and Snelson, 1960ALS
Quantity Value Units Method Reference Comment
gas84.935cal/mol*KN/AChao J., 1986p=1 bar. Other third-law value of entropy at 298.15 K is 357.2 J/mol*K [ Andon R.J.L., 1971]. The value of S(298.15 K)=358.5 J/mol*K was obtained from equilibrium studies [ Buckley E., 1965].; GT

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
10.0150.Thermodynamics Research Center, 1997p=1 bar. Calculated entropy at 298.15 K is 4.1 J/mol*K higher than the third-law value. Authors [ Chao J., 1986] believe that this is greater than the expected experimental uncertainty and reflects the approximations made in the calculated value. However, it should be noted that other experimental values of S(298.15 K), 357.2 [ Andon R.J.L., 1971] and 358.5 J/mol*K [ Buckley E., 1965], are in better agreement with calculated value. Selected S(T) and Cp(T) values agree with other statistically calculated values [62BER/MCC] within 1 J/mol*K. Values calculated by [ Rodionov P.P., 1969] are up to 9 and 11 J/mol*K lower than selected ones fo Cp(T) and S(T) values, respectively. Please also see Chao J., 1986.; GT
14.12100.
17.73150.
20.78200.
25.311273.15
26.946 ± 0.041298.15
27.067300.
33.638400.
39.587500.
44.653600.
48.953700.
52.646800.
55.844900.
58.6281000.
61.0541100.
63.1691200.
65.0171300.
66.6281400.
68.0351500.
70.841750.
72.872000.
74.382250.
75.502500.
76.342750.
76.983000.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
31.479 ± 0.096365.15Stromsoe E., 1970Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 0.67 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Berman N.S., 1962.; GT
32.95 ± 0.16380.95
32.629 ± 0.098383.15
33.25 ± 0.16386.25
33.66 ± 0.16393.75
33.81 ± 0.10401.15
34.30 ± 0.16405.15
34.35 ± 0.16406.15
34.97 ± 0.16417.25
34.95 ± 0.11419.15
36.08 ± 0.11437.15
36.28 ± 0.16440.75
37.20 ± 0.11455.15
37.96 ± 0.16470.85
40.47 ± 0.16515.95
42.94 ± 0.16560.35
44.19 ± 0.16582.85

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-81.90 ± 0.14kcal/molCcbChao and Rossini, 1965see Rossini, 1934; ALS
Δfliquid-81.88 ± 0.22kcal/molCcbSkinner and Snelson, 1960ALS
Quantity Value Units Method Reference Comment
Δcliquid-635.89 ± 0.13kcal/molCcbChao and Rossini, 1965see Rossini, 1934; Corresponding Δfliquid = -81.89 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-635.91 ± 0.22kcal/molCcbSkinner and Snelson, 1960Corresponding Δfliquid = -81.87 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid50.93cal/mol*KN/AAndon, Connett, et al., 1971DH
liquid51.31cal/mol*KN/AAndon, Connett, et al., 1971DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
47.11298.15N/ADH
47.330298.15Okano, Ogawa, et al., 1988DH
47.005298.15Piekarski and Somsen, 1988DH
47.61298.Conti, Gianni, et al., 1976DH
47.18298.15Andon, Connett, et al., 1971T = 11 to 350 K.; DH
47.04298.15Andon, Connett, et al., 1971T = 11 to 350 K.; DH
44.19281.7Parks, Thomas, et al., 1936T = 103 to 282 K. Glass at lower temperature. Unsmoothed experimental datum.; DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C4H9O- + Hydrogen cation = 2-Butanol

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Δr374.1 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr374.2 ± 2.1kcal/molG+TSTaft, 1987gas phase; value altered from reference due to change in acidity scale; B
Δr374.1 ± 2.8kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr367.5 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr367.6 ± 2.0kcal/molIMRETaft, 1987gas phase; value altered from reference due to change in acidity scale; B
Δr367.5 ± 2.7kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B

Hydrogen + 2-Butanone = 2-Butanol

By formula: H2 + C4H8O = C4H10O

Quantity Value Units Method Reference Comment
Δr-12.95kcal/molEqkBuckley and Herington, 1965gas phase; ALS
Δr-13.0 ± 0.1kcal/molChydDolliver, Gresham, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -13.2 ± 0.1 kcal/mol; At 355 °K; ALS

2-Butanol = Hydrogen + 2-Butanone

By formula: C4H10O = H2 + C4H8O

Quantity Value Units Method Reference Comment
Δr12.96kcal/molEqkCubberley and Mueller, 1946gas phase; ALS
Δr13.664kcal/molEqkKolb and Burwell, 1945gas phase; ALS

1-Propene, 2-methyl- + 2-Butanol = 2-(tert-butoxy)butane

By formula: C4H8 + C4H10O = C8H18O

Quantity Value Units Method Reference Comment
Δr-9.01 ± 0.57kcal/molEqkSharonov, Mishentseva, et al., 1991liquid phase; ALS

Ketene + 2-Butanol = sec-Butyl acetate

By formula: C2H2O + C4H10O = C6H12O2

Quantity Value Units Method Reference Comment
Δr-34.53kcal/molCmRice and Greenberg, 1934liquid phase; ALS

Sodium ion (1+) + 2-Butanol = (Sodium ion (1+) • 2-Butanol)

By formula: Na+ + C4H10O = (Na+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr28.0 ± 1.2kcal/molCIDTRodgers and Armentrout, 1999RCD

Lithium ion (1+) + 2-Butanol = (Lithium ion (1+) • 2-Butanol)

By formula: Li+ + C4H10O = (Li+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr41.6 ± 2.2kcal/molCIDTRodgers and Armentrout, 2000RCD

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]

Skinner and Snelson, 1960
Skinner, H.A.; Snelson, A., The heats of combustion of the four isomeric butyl alcohols, Trans. Faraday Soc., 1960, 56, 1776-1783. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Andon R.J.L., 1971
Andon R.J.L., Thermodynamic properties of organic oxygen compounds. Part XXVII. (+/-)-Butan-2-ol and (+)-butan-2-ol, J. Chem. Soc. A, 1971, 661-664. [all data]

Buckley E., 1965
Buckley E., Equilibria in some secondary alcohol + hydrogen + ketone systems, Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Rodionov P.P., 1969
Rodionov P.P., Thermodynamic functions of 2-butanol (d,l), Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol., 1969, 12, 1214-1218. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Berman N.S., 1962
Berman N.S., Thermodynamic properties of 2-butanol, J. Phys. Chem., 1962, 66, 1444-1448. [all data]

Rossini, 1934
Rossini, F.D., Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages, J. Res. NBS, 1934, 13, 189-197. [all data]

Andon, Connett, et al., 1971
Andon, R.J.; Connett, J.E.; Counsell, J.F.; Lees, E.B.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part XXVII. (±)-Butan-2-ol and (+)-Butan-2-ol, 1971, J. [all data]

Okano, Ogawa, et al., 1988
Okano, T.; Ogawa, H.; Murakami, S., Molar excess volumes, isentropic compressions, and isobaric heat capacities of methanol-isomeric butanol systems at 298.15 K, Can. J. Chem., 1988, 66, 713-717. [all data]

Piekarski and Somsen, 1988
Piekarski, H.; Somsen, G., Heat capacities and volumes of mixtures of N,N-dimethylformamide with isobutanol, sec-butanol and t-pentanol, J. Chem. Soc., Faraday Trans. 1, 1988, 84(2), 529-537. [all data]

Conti, Gianni, et al., 1976
Conti, G.; Gianni, P.; Matteoli, E.; Mengheri, M., Capacita termiche molari di alcuni composti organici mono- e bifunzionali nel liquido puro e in soluzione acquosa a 25C, Chim. Ind. (Milan), 1976, 58, 225. [all data]

Parks, Thomas, et al., 1936
Parks, G.S.; Thomas, S.B.; Light, D.W., XII. Some new heat capacity data for organic glasses. The entropy and free energy of DL-lactic acid, J. Chem. Phys., 1936, 4, 64-69. [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Taft, 1987
Taft, R.W., The Nature and Analysis of Substitutent Electronic Effects, Personal communication. See also Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]

Buckley and Herington, 1965
Buckley, E.; Herington, E.F.G., Equilibria in some secondary alcohol + hydrogen + ketone systems, Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]

Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds, J. Am. Chem. Soc., 1938, 60, 440-450. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Cubberley and Mueller, 1946
Cubberley, A.H.; Mueller, M.B., Equilibrium studies on the dehydrogenation of primary and secondary alcohols. I. 2-Butanol, 2-octanol, cyclopentanol and benzyl alcohol, J. Am. Chem. Soc., 1946, 68, 1149-1151. [all data]

Kolb and Burwell, 1945
Kolb, H.J.; Burwell, R.L., Jr., Equilibrium in the dehydrogenation of secondary propyl and butyl alcohols, J. Am. Chem. Soc., 1945, 67, 1084-1088. [all data]

Sharonov, Mishentseva, et al., 1991
Sharonov, K.G.; Mishentseva, Y.B.; Rozhnov, A.M.; Miroshnichenko, E.A.; Korchatova, L.I., Molar enthalpies of formation and vaporizqation of t-butoxybutanes and thermodynamics of their synthesis from a butanol and 2-methylpropene I. Equilibria of synthesis reactions of t-butoxybutanes in the liquid phase, J. Chem. Thermodyn., 1991, 23, 141-145. [all data]

Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J., Ketene. III. Heat of formation and heat of reaction with alcohols, J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]

Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B., Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References