1-Propanol, 2-methyl-
- Formula: C4H10O
- Molecular weight: 74.1216
- IUPAC Standard InChIKey: ZXEKIIBDNHEJCQ-UHFFFAOYSA-N
- CAS Registry Number: 78-83-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Isobutyl alcohol; Isobutanol; Isopropylcarbinol; 2-Methyl-1-propanol; iso-C4H9OH; Fermentation butyl alcohol; 1-Hydroxymethylpropane; 2-Methylpropanol; 2-Methylpropan-1-ol; 2-Methylpropanol-1; 2-Methylpropyl alcohol; Butanol-iso; Alcool isobutylique; Isobutylalkohol; Rcra waste number U140; UN 1212; i-Butyl alcohol; Isopropyl carbitol; Propanol, 2-methyl-; 2-methyl-1-propanyl alcohol; i-Butanol; Methyl-2 propanol-1; NSC 5708; 2-methylpropanoI
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -67.8 ± 0.2 | kcal/mol | Eqk | Connett, 1975 | Heat of dehydrogenation; ALS |
ΔfH°gas | -67.61 | kcal/mol | N/A | Chao and Rossini, 1965 | Value computed using ΔfHliquid° value of -333.6±0.6 kj/mol from Chao and Rossini, 1965 and ΔvapH° value of 50.7 kj/mol from Skinner and Snelson, 1960.; DRB |
ΔfH°gas | -67.9 ± 0.35 | kcal/mol | Ccb | Skinner and Snelson, 1960 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 83.65 | cal/mol*K | N/A | Counsell J.F., 1968 | GT |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
31.965 | 379.99 | Stromsoe E., 1970 | Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 0.71 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Counsell J.F., 1970.; GT |
32.108 | 381.23 | ||
33.48 ± 0.17 | 390.55 | ||
33.88 ± 0.17 | 397.65 | ||
33.353 | 400.03 | ||
34.40 ± 0.17 | 406.95 | ||
34.95 ± 0.17 | 416.95 | ||
35.35 ± 0.17 | 424.05 | ||
34.978 | 425.01 | ||
36.34 ± 0.17 | 441.85 | ||
36.561 | 450.06 | ||
36.86 ± 0.17 | 451.25 | ||
38.15 ± 0.17 | 474.35 | ||
37.988 | 475.09 | ||
38.34 ± 0.17 | 477.75 | ||
39.67 ± 0.17 | 501.55 | ||
41.02 ± 0.17 | 525.85 | ||
42.16 ± 0.17 | 546.35 | ||
44.20 ± 0.17 | 582.95 | ||
45.29 ± 0.17 | 602.55 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C4H9O- + =
By formula: C4H9O- + H+ = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 374.5 ± 2.0 | kcal/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 374.7 ± 2.1 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 367.9 ± 2.1 | kcal/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 368.1 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
By formula: H2 + C4H8O = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -20.88 ± 0.08 | kcal/mol | Cm | Wiberg, Crocker, et al., 1991 | liquid phase; ALS |
ΔrH° | -16.3 ± 0.2 | kcal/mol | Eqk | Connett, 1975 | gas phase; Heat of dehydrogenation; ALS |
By formula: Na+ + C4H10O = (Na+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25.1 ± 1.4 | kcal/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 25.1 ± 1.4 | kcal/mol | CIDT | Rodgers and Armentrout, 1999 | RCD |
By formula: C4H10O = H2 + C4H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.3 ± 0.2 | kcal/mol | Eqk | Connett, 1975 | gas phase; Heat of dehydrogenation; ALS |
By formula: C4H8 + C4H10O = C8H18O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -8.68 ± 0.43 | kcal/mol | Eqk | Sharonov, Mishentseva, et al., 1991 | liquid phase; ALS |
By formula: C2H2O + C4H10O = C6H12O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -34.37 | kcal/mol | Cm | Rice and Greenberg, 1934 | liquid phase; ALS |
By formula: Li+ + C4H10O = (Li+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40.4 ± 1.9 | kcal/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference |
---|---|---|---|
100. | M | N/A | |
83. | M | Butler, Ramchandani, et al., 1935 |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Connett, 1975
Connett, J.E.,
Chemical equilibria 6. Measurement of equilibrium constants for the dehydrogenation of 2-methylpropan-1-ol by a vapour-flow technique,
J. Chem. Thermodyn., 1975, 7, 1159-1162. [all data]
Chao and Rossini, 1965
Chao, J.; Rossini, F.D.,
Heats of combustion, formation, and isomerization of nineteen alkanols,
J. Chem. Eng. Data, 1965, 10, 374-379. [all data]
Skinner and Snelson, 1960
Skinner, H.A.; Snelson, A.,
The heats of combustion of the four isomeric butyl alcohols,
Trans. Faraday Soc., 1960, 56, 1776-1783. [all data]
Counsell J.F., 1968
Counsell J.F.,
Thermodynamic properties of organic oxygen compounds. Part XIX. Low-temperature heat capacity and entropy of propan-1-ol, 2-methylpropan-1-ol, and pentan-1-ol,
J. Chem. Soc. A, 1968, 1819-1823. [all data]
Stromsoe E., 1970
Stromsoe E.,
Heat capacity of alcohol vapors at atmospheric pressure,
J. Chem. Eng. Data, 1970, 15, 286-290. [all data]
Counsell J.F., 1970
Counsell J.F.,
Thermodynamic properties of organic oxygen compounds. 24. Vapor heat capacities and enthalpies of vaporization of ethanol, 2-methyl-1-propanol, and 1-pentanol,
J. Chem. Thermodyn., 1970, 2, 367-372. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M.,
Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups,
J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B.,
Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]
Sharonov, Mishentseva, et al., 1991
Sharonov, K.G.; Mishentseva, Y.B.; Rozhnov, A.M.; Miroshnichenko, E.A.; Korchatova, L.I.,
Molar enthalpies of formation and vaporizqation of t-butoxybutanes and thermodynamics of their synthesis from a butanol and 2-methylpropene I. Equilibria of synthesis reactions of t-butoxybutanes in the liquid phase,
J. Chem. Thermodyn., 1991, 23, 141-145. [all data]
Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J.,
Ketene. III. Heat of formation and heat of reaction with alcohols,
J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]
Butler, Ramchandani, et al., 1935
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W.,
The Solubility of Non-Electrolytes. Part 1. The Free Energy of Hydration of Some Alphatic Alcohols,
J. Chem. Soc., 1935, 280-285, https://doi.org/10.1039/jr9350000280
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas S°gas Entropy of gas at standard conditions d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.