Deuterium oxide
- Formula: D2O
- Molecular weight: 20.0276
- IUPAC Standard InChIKey: XLYOFNOQVPJJNP-ZSJDYOACSA-N
- CAS Registry Number: 7789-20-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
View 3d structure (requires JavaScript / HTML 5) - Species with the same structure:
- Isotopologues:
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -59.560 | kcal/mol | Review | Chase, 1998 | Data last reviewed in June, 1977 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 47.404 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1977 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1400. | 1400. to 6000. |
---|---|---|
A | 6.753131 | 12.05740 |
B | 3.659630 | 1.094610 |
C | 1.310250 | -0.177548 |
D | -0.894914 | 0.011098 |
E | 0.022376 | -2.505101 |
F | -61.67151 | -67.89981 |
G | 54.56219 | 56.35220 |
H | -59.56099 | -59.56099 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in June, 1977 | Data last reviewed in June, 1977 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tfus | 276.97 | K | N/A | Steckel and Szapiro, 1963 | Uncertainty assigned by TRC = 0.03 K; TRC |
Tfus | 276.97 | K | N/A | Taylor and Selwood, 1934 | Uncertainty assigned by TRC = 0.05 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 643.89 | K | N/A | Aleksandrov, 1986 | Uncertainty assigned by TRC = 0.2 K; TRC |
Tc | 643.89 | K | N/A | Sifner, 1985 | Uncertainty assigned by TRC = 0.2 K; TRC |
Tc | 0. | K | N/A | Riesenfeld and Chang, 1935 | TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 213.88 | atm | N/A | Aleksandrov, 1986 | Uncertainty assigned by TRC = 0.69 atm; TRC |
Pc | 213.88 | atm | N/A | Sifner, 1985 | Uncertainty assigned by TRC = 0.15 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 17.8 | mol/l | N/A | Aleksandrov, 1986 | Uncertainty assigned by TRC = 0.2 mol/l; TRC |
ρc | 17.8 | mol/l | N/A | Sifner, 1985 | Uncertainty assigned by TRC = 0.2 mol/l; TRC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
379. to 573. | 5.14536 | 1700.073 | -44.013 | Liu and Lindsay, 1970 | Coefficents calculated by NIST from author's data. |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Cl- + D2O = (Cl- • D2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.70 ± 0.20 | kcal/mol | IMRE | Larson and McMahon, 1988 | gas phase; Anchored to Keesee and Castleman, 19802: HOH..Cl- + DOD <=> DOD..Cl- + HOH, Keq=0.77; B |
By formula: DO- + D2O = (DO- • D2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.80 ± 0.70 | kcal/mol | TDAs | Meot-ner and Sieck, 1986 | gas phase; B |
ΔrH° | 22.5 ± 2.0 | kcal/mol | TDAs | Arshadi and Kebarle, 1970 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 20.1 ± 1.1 | kcal/mol | TDAs | Meot-ner and Sieck, 1986 | gas phase; B |
ΔrG° | 16.9 ± 2.0 | kcal/mol | TDAs | Arshadi and Kebarle, 1970 | gas phase; B |
By formula: (DO- • D2O) + D2O = (DO- • 2D2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.4 ± 1.0 | kcal/mol | TDAs | Arshadi and Kebarle, 1970 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.70 | kcal/mol | TDAs | Arshadi and Kebarle, 1970 | gas phase; B |
By formula: (DO- • 2D2O) + D2O = (DO- • 3D2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.1 ± 1.0 | kcal/mol | TDAs | Arshadi and Kebarle, 1970 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.70 | kcal/mol | TDAs | Arshadi and Kebarle, 1970 | gas phase; B |
By formula: (DO- • 3D2O) + D2O = (DO- • 4D2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.2 ± 1.0 | kcal/mol | TDAs | Arshadi and Kebarle, 1970 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.50 | kcal/mol | TDAs | Arshadi and Kebarle, 1970 | gas phase; B |
By formula: (DO- • 4D2O) + D2O = (DO- • 5D2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.1 ± 1.0 | kcal/mol | TDAs | Arshadi and Kebarle, 1970 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.20 | kcal/mol | TDAs | Arshadi and Kebarle, 1970 | gas phase; B |
By formula: D2O2- + 2D2O = D4O3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.7 ± 1.8 | kcal/mol | LPES | Clements, Luong, et al., 2001 | gas phase; B |
By formula: F- + D2O = (F- • D2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.0 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1988 | gas phase; Anchored to Arshadi, Yamdagni, et al., 1970: HOH..F- + DOD <=> DOD..F- + HOH, Keq=0.66; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 17.8 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1988 | gas phase; Anchored to Arshadi, Yamdagni, et al., 1970: HOH..F- + DOD <=> DOD..F- + HOH, Keq=0.66; B,M |
By formula: HO- + D2O = (HO- • D2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.8 | kcal/mol | PHPMS | Meot-ner and Sieck, 1986 | gas phase; OD-, D2O; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.2 | cal/mol*K | PHPMS | Meot-ner and Sieck, 1986 | gas phase; OD-, D2O; M |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.2 ± 1.8 | kcal/mol | PDis | Deyerl, Clements, et al., 2001 | gas phase; B |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Steckel and Szapiro, 1963
Steckel, F.; Szapiro, S.,
Physical Prop. of Heavy Oxygen Water Part 1. Density and Thermal Expansion,
Trans. Faraday Soc., 1963, 59, 331-43. [all data]
Taylor and Selwood, 1934
Taylor, H.S.; Selwood, P.W.,
Some Properties of Heavy Water,
J. Am. Chem. Soc., 1934, 56, 998. [all data]
Aleksandrov, 1986
Aleksandrov, A.A.,
Critical Parameters of Ordinary and Heavy Water,
Teploenergetika, 1986, No. 1, 74. [all data]
Sifner, 1985
Sifner, O.,
Recommended Values of Critical Parameters of Ordinary and Heavy Water,
Chem. Listy, 1985, 79, 199. [all data]
Riesenfeld and Chang, 1935
Riesenfeld, E.H.; Chang, T.L.,
The Critical Data of Light and Heavy Water and the Density-Temperature Diagrams.,
Z. Phys. Chem., Abt. B, 1935, 30, 61-8. [all data]
Liu and Lindsay, 1970
Liu, C.-T.; Lindsay, W.T., Jr.,
Vapor Pressure of D2O from 106 to 300 ºC,
J. Chem. Eng. Data, 1970, 15, 4, 510-513, https://doi.org/10.1021/je60047a015
. [all data]
Larson and McMahon, 1988
Larson, J.W.; McMahon, T.B.,
Equilibrium Isotope Effects on the Hydration of Gas Phase Ions. The Effect of H-Bond Formation on Deuterium Isotopic Fractionation Factors for H3O+,H5O2+,F(HOH)-, and Cl(HOH)-,
J. Am. Chem. Soc., 1988, 110, 4, 1087, https://doi.org/10.1021/ja00212a015
. [all data]
Keesee and Castleman, 1980
Keesee, R.G.; Castleman, A.W., Jr.,
Heats of formation of SO2Cl- and (SO2)2Cl-,
J. Am. Chem. Soc., 1980, 102, 1446. [all data]
Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W.,
Relative acidities of water and methanol, and the stabilities of the dimer adducts,
J. Phys. Chem., 1986, 90, 6687. [all data]
Arshadi and Kebarle, 1970
Arshadi, M.; Kebarle, P.,
Hydration of OH- and O2- in the Gas Phase. Comparative Solvation of OH- by Water and the Hydrogen Halides. Effect of Acidity,
J. Phys. Chem., 1970, 74, 7, 1483, https://doi.org/10.1021/j100702a015
. [all data]
Clements, Luong, et al., 2001
Clements, T.G.; Luong, A.K.; Deyerl, H.J.; Continetti, R.E.,
Dissociative photodetachment studies of O-(H2O)(2), OH- (H2O)(2), and the deuterated isotopomers: Energetics and three- body dissociation dynamics,
J. Chem. Phys., 2001, 114, 19, 8436-8444, https://doi.org/10.1063/1.1366332
. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Deyerl, Clements, et al., 2001
Deyerl, H.J.; Clements, T.G.; Luong, A.K.; Continetti, R.E.,
Transition state dynamics of the OH+OH - O+H2O reaction studied by dissociative photodetachment of H2O2-,
J. Chem. Phys., 2001, 115, 15, 6931-6940, https://doi.org/10.1063/1.1404148
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Ion clustering data, References
- Symbols used in this document:
Pc Critical pressure S°gas,1 bar Entropy of gas at standard conditions (1 bar) Tc Critical temperature Tfus Fusion (melting) point ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.