Hydrogen sulfide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

HS- + Hydrogen cation = Hydrogen sulfide

By formula: HS- + H+ = H2S

Quantity Value Units Method Reference Comment
Δr1470. ± 3.kJ/molAVGN/AAverage of 6 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1441. ± 13.kJ/molH-TSRempala and Ervin, 2000gas phase; B
Δr1443. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1443.1 ± 0.42kJ/molH-TSShiell, Hu, et al., 1900gas phase; 0K:350.125±0.009 kcal/mol, corr to 298K from Gurvich, Veyts, et al., With EA( Breyer, Frey, et al., 1981)BDE(0K)=89.97±0.05; B
Δr1446. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B
Δr1432.2kJ/molN/ACheck, Faust, et al., 2001gas phase; MnO2-(t); ; ΔS(EA)=5.4; B

Fluorine anion + Hydrogen sulfide = (Fluorine anion • Hydrogen sulfide)

By formula: F- + H2S = (F- • H2S)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr145. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
Δr78.7J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr121. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

H3S+ + Hydrogen sulfide = (H3S+ • Hydrogen sulfide)

By formula: H3S+ + H2S = (H3S+ • H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr64.4kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
Δr45.2kJ/molPIWalters and Blais, 1984gas phase; M
Δr44.4kJ/molPIPrest, Tzeng, et al., 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M
Δr74.5J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M
Δr78.2J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

CN- + Hydrogen sulfide = (CN- • Hydrogen sulfide)

By formula: CN- + H2S = (CN- • H2S)

Quantity Value Units Method Reference Comment
Δr79.1 ± 4.2kJ/molTDEqMeot-ner, 1988gas phase; B
Δr83. ± 15.kJ/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr99.6J/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr54.0 ± 4.2kJ/molTDEqMeot-ner, 1988gas phase; B
Δr51.9 ± 9.6kJ/molIMRELarson and McMahon, 1987gas phase; B,M

(H3S+ • 3Hydrogen sulfide) + Hydrogen sulfide = (H3S+ • 4Hydrogen sulfide)

By formula: (H3S+ • 3H2S) + H2S = (H3S+ • 4H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr28.kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
Δr10.kJ/molPIWalters and Blais, 1984gas phase; M
Δr14.kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M
Δr42.J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M

(H3S+ • 2Hydrogen sulfide) + Hydrogen sulfide = (H3S+ • 3Hydrogen sulfide)

By formula: (H3S+ • 2H2S) + H2S = (H3S+ • 3H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr18.kJ/molPIWalters and Blais, 1984gas phase; M
Δr35.kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
Δr23.kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M
Δr59.J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M

(H3S+ • Hydrogen sulfide) + Water = (H3S+ • Water • Hydrogen sulfide)

By formula: (H3S+ • H2S) + H2O = (H3S+ • H2O • H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr79.9kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; From thermochemical cycle,switching reaction(H3S+ H2O)H2O; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr91.2J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; From thermochemical cycle,switching reaction(H3S+ H2O)H2O; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984; M

(H3S+ • Hydrogen sulfide) + Hydrogen sulfide = (H3S+ • 2Hydrogen sulfide)

By formula: (H3S+ • H2S) + H2S = (H3S+ • 2H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr38.kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
Δr25.kJ/molPIWalters and Blais, 1984gas phase; M
Δr30.kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M
Quantity Value Units Method Reference Comment
Δr87.4J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M
Δr72.4J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

(H3S+ • 4Hydrogen sulfide) + Hydrogen sulfide = (H3S+ • 5Hydrogen sulfide)

By formula: (H3S+ • 4H2S) + H2S = (H3S+ • 5H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr26.kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
7.1185.PHPMSHiraoka and Kebarle, 1977gas phase; M

CH6N+ + Hydrogen sulfide = (CH6N+ • Hydrogen sulfide)

By formula: CH6N+ + H2S = (CH6N+ • H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr45.2kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
23.270.PHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

HS- + Hydrogen sulfide = (HS- • Hydrogen sulfide)

By formula: HS- + H2S = (HS- • H2S)

Quantity Value Units Method Reference Comment
Δr55.2 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr82.4J/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr31. ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B

NH4+ + Hydrogen sulfide = (NH4+ • Hydrogen sulfide)

By formula: H4N+ + H2S = (H4N+ • H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr47.7kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr69.9J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

C3H7+ + Hydrogen sulfide = (C3H7+ • Hydrogen sulfide)

By formula: C3H7+ + H2S = (C3H7+ • H2S)

Quantity Value Units Method Reference Comment
Δr134.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; condensation; M
Quantity Value Units Method Reference Comment
Δr146.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; condensation; M

Carbonyl sulfide + Water = Carbon dioxide + Hydrogen sulfide

By formula: COS + H2O = CO2 + H2S

Quantity Value Units Method Reference Comment
Δr-33.4 ± 0.96kJ/molEqkTerres and Wesemann, 1932gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -35.66 kJ/mol; ALS

(H2S+ • Hydrogen sulfide) + Hydrogen sulfide = (H2S+ • 2Hydrogen sulfide)

By formula: (H2S+ • H2S) + H2S = (H2S+ • 2H2S)

Quantity Value Units Method Reference Comment
Δr18.kJ/molPIPrest, Tzeng, et al., 1983gas phase; M
Δr13.kJ/molPIWalters and Blais, 1981gas phase; M

Iodide + Hydrogen sulfide = (Iodide • Hydrogen sulfide)

By formula: I- + H2S = (I- • H2S)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr37. ± 4.2kJ/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M

H2S+ + Hydrogen sulfide = (H2S+ • Hydrogen sulfide)

By formula: H2S+ + H2S = (H2S+ • H2S)

Quantity Value Units Method Reference Comment
Δr88.7kJ/molPIPrest, Tzeng, et al., 1983gas phase; M
Δr71.1kJ/molPIWalters and Blais, 1981gas phase; M

Thioacetic acid + Water = Acetic acid + Hydrogen sulfide

By formula: C2H4OS + H2O = C2H4O2 + H2S

Quantity Value Units Method Reference Comment
Δr-2.7 ± 0.3kJ/molCmSunner and Wadso, 1957liquid phase; Heat of hydrolysis; ALS

F5S- + Hydrogen sulfide = (F5S- • Hydrogen sulfide)

By formula: F5S- + H2S = (F5S- • H2S)

Quantity Value Units Method Reference Comment
Δr212. ± 48.kJ/molSIFTZangerle, Hansel, et al., 1993gas phase; CID with Ar; M

(H2S+ • 2Hydrogen sulfide) + Hydrogen sulfide = (H2S+ • 3Hydrogen sulfide)

By formula: (H2S+ • 2H2S) + H2S = (H2S+ • 3H2S)

Quantity Value Units Method Reference Comment
Δr5.0kJ/molPIWalters and Blais, 1981gas phase; M

(H2S+ • 3Hydrogen sulfide) + Hydrogen sulfide = (H2S+ • 4Hydrogen sulfide)

By formula: (H2S+ • 3H2S) + H2S = (H2S+ • 4H2S)

Quantity Value Units Method Reference Comment
Δr5.9kJ/molPIWalters and Blais, 1981gas phase; M

(H2S+ • 4Hydrogen sulfide) + Hydrogen sulfide = (H2S+ • 5Hydrogen sulfide)

By formula: (H2S+ • 4H2S) + H2S = (H2S+ • 5H2S)

Quantity Value Units Method Reference Comment
Δr11.kJ/molPIWalters and Blais, 1981gas phase; M

trithiocarbonic acid = Carbon disulfide + Hydrogen sulfide

By formula: CH2S3 = CS2 + H2S

Quantity Value Units Method Reference Comment
Δr44. ± 1.kJ/molCmGattow and Krebes, 1963liquid phase; ALS

Nitric oxide anion + Hydrogen sulfide = H2NOS-

By formula: NO- + H2S = H2NOS-

Quantity Value Units Method Reference Comment
Δr23.4kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Vibrational and/or electronic energy levels

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   C     Symmetry Number σ = 2


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1 1 Sym str 2615  A 2614.6 gas
a1 2 Bend 1183  A 1182.7 gas
b1 3 Anti str 2626  B 2626 gas

Source: Shimanouchi, 1972

Notes

A0~1 cm-1 uncertainty
B1~3 cm-1 uncertainty

References

Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Rempala and Ervin, 2000
Rempala, K.; Ervin, K.M., Collisional activation of the Endoergic Hydrogen Atom Transfer Reaction S-(2P) + H2 - SH- + H, J. Chem. Phys., 2000, 112, 10, 4579, https://doi.org/10.1063/1.481016 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Shiell, Hu, et al., 1900
Shiell, R.C.; Hu, X.K.; Hu, Q.J.; Hepburn, J.W., A determination of the bond dissociation energy (D-0(H-SH)): Threshold ion-pair production spectroscopy (TIPPS) of a triatomic molecule, J. Phys. Chem. A, 1900, 104, 19, 4339-4342, https://doi.org/10.1021/jp000025k . [all data]

Gurvich, Veyts, et al.
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Hemisphere Publishing, NY, 1989, V. 1 2, Thermodynamic Properties of Individual Substances, 4th Ed. [all data]

Breyer, Frey, et al., 1981
Breyer, F.; Frey, P.; Hotop, H., High Resolution Photoelectron Spectrometry of Negative Ions: Rotational Transitions in Laser-Photodetachment of OH-, SH-, and SD-, Z. Phys. A, 1981, 300, 1, 7, https://doi.org/10.1007/BF01412609 . [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Hiraoka and Kebarle, 1977
Hiraoka, K.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Proton in Hydrogen Sulfide and Hydrogen Sulfide - Water Mixtures. Stabilities of the Hydrogen Bonded Complexes H+(H2S)x(H2O)y, Can. J. Chem., 1977, 55, 1, 24, https://doi.org/10.1139/v77-005 . [all data]

Walters and Blais, 1984
Walters, E.A.; Blais, N.C., Molecular beam photoionization and fragmentation of D2S, (H2S)2, (D2S)2, and H2S.H2O, J. Chem. Phys., 1984, 80, 3501. [all data]

Prest, Tzeng, et al., 1983
Prest, H.F.; Tzeng, W.-B.; Brom, J.M., Jr.; Ng, C.Y., Photoionization study of (H2S)2 and (H2S)3, J. Am. Chem. Soc., 1983, 105, 7531. [all data]

Meot-Ner (Mautner) and Field, 1977
Meot-Ner (Mautner), M.; Field, F.H., Stability, Association and Dissociation in the Cluster Ions H3S+.nH2S, H3O+.nH2O and H3O+.H2O, J. Am. Chem. Soc., 1977, 99, 4, 998, https://doi.org/10.1021/ja00446a004 . [all data]

Meot-ner, 1988
Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Cunningham, Payzant, et al., 1972
Cunningham, A.J.; Payzant, J.D.; Kebarle, P., A Kinetic Study of the Proton Hydrate H+(H2O)n Equilibria in the Gas Phase, J. Am. Chem. Soc., 1972, 94, 22, 7627, https://doi.org/10.1021/ja00777a003 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Meot-Ner (Mautner) and Sieck, 1985
Meot-Ner (Mautner), M.; Sieck, L.W., The Ionic Hydrogen Bond and Ion Solvation. 4. SH+ O and NH+ S Bonds. Correlations with Proton Affinity. Mutual Effects of Weak and Strong Ligands in Mixed Clusters, J. Phys. Chem., 1985, 89, 24, 5222, https://doi.org/10.1021/j100270a021 . [all data]

Meot-Ner (Mautner) and Sieck, 1991
Meot-Ner (Mautner), M.; Sieck, L.W., Proton affinity ladders from variable-temperature equilibrium measurements. 1. A reevaluation of the upper proton affinity range, J. Am. Chem. Soc., 1991, 113, 12, 4448, https://doi.org/10.1021/ja00012a012 . [all data]

Terres and Wesemann, 1932
Terres, E.; Wesemann, H., Uber Gleichgewichtsmessungen der teilreaktionen bei der umsetzung von scnwefelkohlenstoff mit wasserdampf im temperaturgebiet von 350° bis 900° C, Angew. Chem., 1932, 45, 795-832. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Walters and Blais, 1981
Walters, E.A.; Blais, N.C., Molecular beam photoionization of (H2S)n,n = 1 - 7, J. Chem. Phys., 1981, 75, 4208. [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Sunner and Wadso, 1957
Sunner, S.; Wadso, I., The heat of hydrolysis of thiolacetic acid, Trans. Faraday Soc., 1957, 53, 455-459. [all data]

Zangerle, Hansel, et al., 1993
Zangerle, R.; Hansel, A.; Richter, R.; Lindinger, W., The Reaction of SF5+ + H2S at Near Thermal Energies: Competition between Association and Binary Reactions, Int. J. Mass Spectrom. Ion Proc., 1993, 129, 117, https://doi.org/10.1016/0168-1176(93)87035-Q . [all data]

Gattow and Krebes, 1963
Gattow, V.G.; Krebes, B., Das kohlenstoffsulfid-di-(hydrogensulfid) SC(SH)2 und das system H2S-CS2. 2. Thermochemie des SC(SH)2, Z. Anorg. Allg. Chem., 1963, 322, 113. [all data]

Hendricks, de Clercq, et al., 2002
Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S., Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2), J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444 . [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, References