Bromine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas30.91 ± 0.11kJ/molReviewCox, Wagman, et al., 1984CODATA Review value
Δfgas30.91kJ/molReviewChase, 1998Data last reviewed in June, 1982
Quantity Value Units Method Reference Comment
gas,1 bar245.468 ± 0.005J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar245.38J/mol*KReviewChase, 1998Data last reviewed in June, 1982

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 332.503 to 3400.3400. to 6000.
A 38.5272334.99288
B -1.9768359.252248
C 1.526107-2.361588
D -0.1983980.154336
E -0.185815-43.07637
F 18.87620-7.467771
G 291.4863273.6303
H 30.9100130.91001
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in June, 1982 Data last reviewed in June, 1982

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
liquid152.21 ± 0.30J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tfus266.0KN/AWeber, 1912Uncertainty assigned by TRC = 0.3 K; TRC
Tfus254.15KN/ASerullas, 1827Uncertainty assigned by TRC = 10. K; TRC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
29.8358.N/ABlair and Ihle, 1973Based on data from 343. to 383. K.; AC
31.3312.N/AFischer and Bingle, 1955Based on data from 297. to 389. K.; AC
17.6206.CGiauque and Wiebe, 1928AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
343. to 383.4.708271562.2640.628Blair and Ihle, 1973Coefficents calculated by NIST from author's data.
224.5 to 331.42.94529638.258-115.144Stull, 1947Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

C8H6MoO3 (cr) + Bromine (solution) = Hydrogen bromide (solution) + Cyclopentadienylmolybdenumtricarbonyl bromide (cr)

By formula: C8H6MoO3 (cr) + Br2 (solution) = HBr (solution) + C8H5BrMoO3 (cr)

Quantity Value Units Method Reference Comment
Δr-150. ± 12.kJ/molN/ANolan, López de la Vega, et al., 1986solvent: Carbon tetrachloride; The reaction enthalpy was calculated Nolan, López de la Vega, et al., 1986 from the experimental values for the enthalpies of the following reactions: Mo(Cp)(CO)3(H)(cr) + 2Br2(solution) = Mo(Cp)(CO)2(Br)3(solution) + HBr(solution) + CO(solution), -254.0 ± 8.4 kJ/mol, and Mo(Cp)(CO)3(Br)(cr) + Br2(solution) = Mo(Cp)(CO)2(Br)3(solution) + CO(solution), -104.2 ± 8.4 kJ/mol; MS

C16H10Mo2O6 (cr) + Bromine (solution) = 2Cyclopentadienylmolybdenumtricarbonyl bromide (cr)

By formula: C16H10Mo2O6 (cr) + Br2 (solution) = 2C8H5BrMoO3 (cr)

Quantity Value Units Method Reference Comment
Δr-177. ± 17.kJ/molN/ANolan, López de la Vega, et al., 1986solvent: Carbon tetrachloride; The reaction enthalpy was calculated Nolan, López de la Vega, et al., 1986 from the experimental values for the enthalpies of the following reactions: [Mo(Cp)(CO)3]2(cr) + 3Br2(solution) = 2Mo(Cp)(CO)2(Br)3(solution) + 2CO(solution), -384.9 ± 4.2 kJ/mol, and Mo(Cp)(CO)3(Br)(cr) + Br2(solution) = Mo(Cp)(CO)2(Br)3(solution) + CO(solution), -104.2 ± 8.4 kJ/mol; MS

Bromine anion + Bromine = (Bromine anion • Bromine)

By formula: Br- + Br2 = (Br- • Br2)

Quantity Value Units Method Reference Comment
Δr127. ± 7.1kJ/molCIDTNizzi, Pommerening, et al., 1998gas phase; B
Δr141.0kJ/molN/ACheck, Faust, et al., 2001gas phase; Fe-; ; ΔS(EA)=5.8; B
Quantity Value Units Method Reference Comment
Δr94.14kJ/molN/ACheck, Faust, et al., 2001gas phase; Fe-; ; ΔS(EA)=5.8; B

1-Butene + Bromine = Butane, 1,2-dibromo-

By formula: C4H8 + Br2 = C4H8Br2

Quantity Value Units Method Reference Comment
Δr-120.9kJ/molCmLister, 1941gas phase; Heat of bromination at 300 K; ALS
Δr-123.2 ± 0.84kJ/molCmConn, Kistiakowsky, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -123.8 ± 0.84 kJ/mol; At 355 °K; ALS

2-Butene, (E)- + Bromine = erythro-2,3-Dibromobutane

By formula: C4H8 + Br2 = C4H8Br2

Quantity Value Units Method Reference Comment
Δr-121.1 ± 0.84kJ/molCmConn, Kistiakowsky, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -121.7 ± 0.84 kJ/mol; At 355 °K; ALS

Ethylene + Bromine = Ethane, 1,2-dibromo-

By formula: C2H4 + Br2 = C2H4Br2

Quantity Value Units Method Reference Comment
Δr-120.9 ± 1.3kJ/molCmConn, Kistiakowsky, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -121.6 ± 1.3 kJ/mol; At 355 °K; ALS

Propene + Bromine = Propane, 1,2-dibromo-

By formula: C3H6 + Br2 = C3H6Br2

Quantity Value Units Method Reference Comment
Δr-122.5 ± 0.84kJ/molCmConn, Kistiakowsky, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -123.1 ± 0.84 kJ/mol; At 355 °K; ALS

Hydrogen bromide + Benzene, (bromomethyl)- = Toluene + Bromine

By formula: HBr + C7H7Br = C7H8 + Br2

Quantity Value Units Method Reference Comment
Δr33.9 ± 4.2kJ/molEqkBenson and Buss, 1957gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 33. ± 4. kJ/mol; ALS

Carbonic dibromide = Carbon monoxide + Bromine

By formula: CBr2O = CO + Br2

Quantity Value Units Method Reference Comment
Δr33.9 ± 0.42kJ/molEqkDunning and Pritchard, 1972gas phase; ALS
Δr4.3 ± 0.4kJ/molEqkSchumacher and Bergmann, 1931gas phase; ALS

Trimethylindium (l) + 3Bromine (l) = Br3In (cr) + 3Methane, bromo- (g)

By formula: C3H9In (l) + 3Br2 (l) = Br3In (cr) + 3CH3Br (g)

Quantity Value Units Method Reference Comment
Δr-665.3 ± 4.2kJ/molRSCClarke and Price, 1968Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS

Mercury, dimethyl- (l) + 2Bromine (l) = 2Methane, bromo- (g) + Mercury(II) bromide (cr)

By formula: C2H6Hg (l) + 2Br2 (l) = 2CH3Br (g) + Br2Hg (cr)

Quantity Value Units Method Reference Comment
Δr-302.1 ± 2.5kJ/molRSCHartley, Pritchard, et al., 1950Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS

Stannane, trimethyl(phenylmethyl)- (l) + Bromine (g) = Benzene, (bromomethyl)- (l) + C3H9BrSn (l)

By formula: C10H16Sn (l) + Br2 (g) = C7H7Br (l) + C3H9BrSn (l)

Quantity Value Units Method Reference Comment
Δr-226.6 ± 0.9kJ/molRSCPedley and Skinner, 1959Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS

Stannane, tetramethyl- (l) + Bromine (g) = C3H9BrSn (l) + Methane, bromo- (g)

By formula: C4H12Sn (l) + Br2 (g) = C3H9BrSn (l) + CH3Br (g)

Quantity Value Units Method Reference Comment
Δr-202.1 ± 2.9kJ/molRSCPedley, Skinner, et al., 1957Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS

C8H6MoO3 (cr) + 2Bromine (solution) = C7H5Br3MoO2 (solution) + Hydrogen bromide (solution) + Carbon monoxide (solution)

By formula: C8H6MoO3 (cr) + 2Br2 (solution) = C7H5Br3MoO2 (solution) + HBr (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr-254.0 ± 8.4kJ/molRSCNolan, López de la Vega, et al., 1986solvent: Carbon tetrachloride; MS

Propanedioic acid + Bromine = Hydrogen bromide + Propanedioic acid, 2-bromo-

By formula: C3H4O4 + Br2 = HBr + C3H3BrO4

Quantity Value Units Method Reference Comment
Δr-66.0 ± 2.9kJ/molCmKoros, Orban, et al., 1979liquid phase; solvent: Sulfuric acid (1M); Bromination; ALS

Hexamethylditin (l) + Bromine (l) = 2C3H9BrSn (l)

By formula: C6H18Sn2 (l) + Br2 (l) = 2C3H9BrSn (l)

Quantity Value Units Method Reference Comment
Δr-293.9 ± 2.1kJ/molRSCPedley, Skinner, et al., 1957Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS

C16H10Mo2O6 (cr) + 3Bromine (solution) = 2C7H5Br3MoO2 (solution) + 2Carbon monoxide (solution)

By formula: C16H10Mo2O6 (cr) + 3Br2 (solution) = 2C7H5Br3MoO2 (solution) + 2CO (solution)

Quantity Value Units Method Reference Comment
Δr-384.9 ± 4.2kJ/molRSCNolan, López de la Vega, et al., 1986solvent: Carbon tetrachloride; MS

Hydrogen bromide + Bromoacetone = Acetone + Bromine

By formula: HBr + C3H5BrO = C3H6O + Br2

Quantity Value Units Method Reference Comment
Δr31.1 ± 8.4kJ/molEqkKing, Golden, et al., 1971gas phase; Heat of bromination at 516-618 K; ALS

Cyclopentadienylmolybdenumtricarbonyl bromide (cr) + Bromine (solution) = C7H5Br3MoO2 (solution) + Carbon monoxide (solution)

By formula: C8H5BrMoO3 (cr) + Br2 (solution) = C7H5Br3MoO2 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr-104.2 ± 8.4kJ/molRSCNolan, López de la Vega, et al., 1986solvent: Carbon tetrachloride; MS

C12H7MnO5 (cr) + 1.5Bromine (g) = Benzene, (bromomethyl)- (g) + manganese dibromide (cr) + 5Carbon monoxide (g)

By formula: C12H7MnO5 (cr) + 1.5Br2 (g) = C7H7Br (g) + Br2Mn (cr) + 5CO (g)

Quantity Value Units Method Reference Comment
Δr-194.5 ± 7.8kJ/molHAL-HFCConnor, Zafarani-Moattar, et al., 1982MS

Bromine + Cyclooctene = 1,2-Dibromocyclooctane

By formula: Br2 + C8H14 = C8H14Br2

Quantity Value Units Method Reference Comment
Δr-122.63kJ/molCmLister, 1941gas phase; Heat of bromination at 300 K; ALS

C6F3MnO5 (cr) + 1.5Bromine (g) = manganese dibromide (cr) + 5Carbon monoxide (g) + Bromotrifluoromethane (g)

By formula: C6F3MnO5 (cr) + 1.5Br2 (g) = Br2Mn (cr) + 5CO (g) + CBrF3 (g)

Quantity Value Units Method Reference Comment
Δr-173. ± 3.kJ/molHAL-HFCConnor, Zafarani-Moattar, et al., 1982MS

C7F3MnO6 (cr) + 1.5Bromine (g) = manganese dibromide (cr) + 6Carbon monoxide (g) + Bromotrifluoromethane (g)

By formula: C7F3MnO6 (cr) + 1.5Br2 (g) = Br2Mn (cr) + 6CO (g) + CBrF3 (g)

Quantity Value Units Method Reference Comment
Δr-161. ± 2.kJ/molHAL-HFCConnor, Zafarani-Moattar, et al., 1982MS

Cyclohexene + Bromine = Cyclohexane, 1,2-dibromo-

By formula: C6H10 + Br2 = C6H10Br2

Quantity Value Units Method Reference Comment
Δr-140.71kJ/molCmLister, 1941gas phase; Heat of bromination at 300 K; ALS

Cycloheptene + Bromine = 1,2-Dibromocycloheptane

By formula: C7H12 + Br2 = C7H12Br2

Quantity Value Units Method Reference Comment
Δr-127.4kJ/molCmLister, 1941gas phase; Heat of bromination at 300 K; ALS

1-Heptene + Bromine = C7H14Br2

By formula: C7H14 + Br2 = C7H14Br2

Quantity Value Units Method Reference Comment
Δr-126.5kJ/molCmLister, 1941gas phase; Heat of bromination at 300 K; ALS

Cyclopentene + Bromine = Cyclopentane, 1,2-dibromo,trans-

By formula: C5H8 + Br2 = C5H8Br2

Quantity Value Units Method Reference Comment
Δr-119.7 ± 2.5kJ/molCmLister, 1941gas phase; Halogenation at 27 C; ALS

Manganese, pentacarbonylmethyl- (cr) + 1.5Bromine (g) = manganese dibromide (cr) + 5Carbon monoxide (g) + Methane, bromo- (g)

By formula: C6H3MnO5 (cr) + 1.5Br2 (g) = Br2Mn (cr) + 5CO (g) + CH3Br (g)

Quantity Value Units Method Reference Comment
Δr-209. ± 3.kJ/molHAL-HFCConnor, Zafarani-Moattar, et al., 1982MS

Manganese, acetylpentacarbonyl-, (OC-6-21)- (cr) + 1.5Bromine (g) = manganese dibromide (cr) + 6Carbon monoxide (g) + Methane, bromo- (g)

By formula: C7H3MnO6 (cr) + 1.5Br2 (g) = Br2Mn (cr) + 6CO (g) + CH3Br (g)

Quantity Value Units Method Reference Comment
Δr-161. ± 5.kJ/molHAL-HFCConnor, Zafarani-Moattar, et al., 1982MS

Benzene, (bromomethyl)- + 0.5Hydrogen = Toluene + 0.5Bromine

By formula: C7H7Br + 0.5H2 = C7H8 + 0.5Br2

Quantity Value Units Method Reference Comment
Δr-4. ± 2.kJ/molChydAshcroft, Carson, et al., 1963liquid phase; ALS

C10H22Mg (cr) + Hydrogen (g) + Bromine (l) = 2Neopentane (l) + Br2Mg (cr)

By formula: C10H22Mg (cr) + H2 (g) + Br2 (l) = 2C5H12 (l) + Br2Mg (cr)

Quantity Value Units Method Reference Comment
Δr-669.6 ± 6.6kJ/molRSCAkkerman, Schat, et al., 1983MS

Ethene, tetrafluoro- + Bromine = 1,2-Dibromotetrafluoroethane

By formula: C2F4 + Br2 = C2Br2F4

Quantity Value Units Method Reference Comment
Δr-161.0kJ/molCmLacher, Casali, et al., 1956gas phase; Heat of bromination; ALS

2Benzene, bromo- + Mercury(II) bromide = Mercury, diphenyl- + 2Bromine

By formula: 2C6H5Br + Br2Hg = C12H10Hg + 2Br2

Quantity Value Units Method Reference Comment
Δr328.6 ± 3.3kJ/molCmChernick, Skinner, et al., 1956liquid phase; ALS

Dimanganese decacarbonyl (cr) + 2Bromine (g) = 2manganese dibromide (cr) + 10Carbon monoxide (g)

By formula: C10Mn2O10 (cr) + 2Br2 (g) = 2Br2Mn (cr) + 10CO (g)

Quantity Value Units Method Reference Comment
Δr-263.6 ± 8.2kJ/molHAL-HFCConnor, Zafarani-Moattar, et al., 1982MS

Hydrogen + 2Methane, bromo- = 2Methane + Bromine

By formula: H2 + 2CH3Br = 2CH4 + Br2

Quantity Value Units Method Reference Comment
Δr-28. ± 3.kJ/molChydAdams, Carson, et al., 1966liquid phase; ALS

2-Butene, (Z)- + Bromine = Erythro-2,3-dibromobutane

By formula: C4H8 + Br2 = C4H8Br2

Quantity Value Units Method Reference Comment
Δr-126.3 ± 0.84kJ/molCmConn, Kistiakowsky, et al., 1938gas phase; At 355 °K; ALS

2-Butene, 2-methyl- + Bromine = 2,3-dibromo-2-methylbutane

By formula: C5H10 + Br2 = C5H10Br2

Quantity Value Units Method Reference Comment
Δr-127.2 ± 0.84kJ/molCmConn, Kistiakowsky, et al., 1938gas phase; At 355 °K; ALS

2-Butenedioic acid, 2-methyl-, (Z)- + Bromine = 2-Butenedioic acid, 2-methyl-, (E)- + Bromine

By formula: C5H6O4 + Br2 = C5H6O4 + Br2

Quantity Value Units Method Reference Comment
Δr-5.1 ± 0.7kJ/molEqkJwo, Huang, et al., 1987solid phase; HPLC; ALS

Bromine + Ethene, chlorotrifluoro- = 1,2-Dibromo-1-chloro-1,2,2-trifluoroethane

By formula: Br2 + C2ClF3 = C2Br2ClF3

Quantity Value Units Method Reference Comment
Δr-132.3kJ/molCmLacher, Casali, et al., 1956gas phase; Heat of bromination; ALS

Br3- + Bromine = (Br3- • Bromine)

By formula: Br3- + Br2 = (Br3- • Br2)

Quantity Value Units Method Reference Comment
Δr38. ± 7.1kJ/molCIDTNizzi, Pommerening, et al., 1998gas phase; B

Manganese pentacarbonyl bromide (cr) + 0.5Bromine (g) = manganese dibromide (cr) + 5Carbon monoxide (g)

By formula: C5BrMnO5 (cr) + 0.5Br2 (g) = Br2Mn (cr) + 5CO (g)

Quantity Value Units Method Reference Comment
Δr9.9 ± 1.8kJ/molHAL-HFCConnor, Zafarani-Moattar, et al., 1982MS

Hydrogen + 2Ethyl bromide = 2Ethane + Bromine

By formula: H2 + 2C2H5Br = 2C2H6 + Br2

Quantity Value Units Method Reference Comment
Δr23. ± 13.kJ/molChydAshcroft, Carson, et al., 1965liquid phase; ALS

Trichloromethane + Bromine = Hydrogen bromide + Methane, bromotrichloro-

By formula: CHCl3 + Br2 = HBr + CBrCl3

Quantity Value Units Method Reference Comment
Δr-5.9 ± 0.4kJ/molEqkMendenhall, Golden, et al., 1973gas phase; ALS

Difluoromethane + Bromine = Hydrogen bromide + Methane, bromodifluoro-

By formula: CH2F2 + Br2 = HBr + CHBrF2

Quantity Value Units Method Reference Comment
Δr-39.9 ± 0.3kJ/molEqkOkafo and Whittle, 1974gas phase; ALS

Carbon Tetrachloride + Bromine = bromine chloride + Methane, bromotrichloro-

By formula: CCl4 + Br2 = BrCl + CBrCl3

Quantity Value Units Method Reference Comment
Δr37. ± 1.kJ/molEqkMendenhall, Golden, et al., 1973gas phase; ALS

Fluoroform + Bromine = Hydrogen bromide + Bromotrifluoromethane

By formula: CHF3 + Br2 = HBr + CBrF3

Quantity Value Units Method Reference Comment
Δr-14.kJ/molEqkCorbett, Tarr, et al., 1963gas phase; At 298 K; ALS

Methane, tribromo- + Bromine = Hydrogen bromide + Carbon tetrabromide

By formula: CHBr3 + Br2 = HBr + CBr4

Quantity Value Units Method Reference Comment
Δr-7. ± 3.kJ/molEqkKing, Golden, et al., 1971, 2gas phase; ALS

Hydrogen bromide + Bromotrifluoromethane = Fluoroform + Bromine

By formula: HBr + CBrF3 = CHF3 + Br2

Quantity Value Units Method Reference Comment
Δr19.2 ± 1.0kJ/molEqkCoomber and Whittle, 1967gas phase; ALS

Methane + Bromine = Hydrogen bromide + Methane, bromo-

By formula: CH4 + Br2 = HBr + CH3Br

Quantity Value Units Method Reference Comment
Δr-26.4 ± 0.7kJ/molEqkFerguson, Okafo, et al., 1973gas phase; ALS

Propane, 1,2-dibromo-2-methyl- = 1-Propene, 2-methyl- + Bromine

By formula: C4H8Br2 = C4H8 + Br2

Quantity Value Units Method Reference Comment
Δr139.7 ± 0.46kJ/molCmSunner and Wulff, 1974liquid phase; ALS

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through September, 1976

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 79Br2
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
RydbergFragments of additional Rydberg series converging to A 2Πu of Br2+.
missing citation
Rydberg series converging to X2 2Πg,3/2 of Br2+ : ν = 88306 1 - R/(n-δ)2 , δ = 2.416, 2.446, 2.591, 2.629, n = 5,6,7.
missing citation
Rydberg series converging to X1 2Πg,3/2 of Br2+ : ν = 85165 2 - R/(n-1.843)2 ,n=5,...,12.
missing citation
Rydberg series converging to X1 2Πg,3/2 of Br2+ : ν = 85165 2 - R/(n-1.938)2 ,n=5,...,18.
missing citation
Rydberg series converging to X1 2Πg,3/2 of Br2+ : ν = 85165 2 - R/(n-δ)2 , δ = 2.225, 2.422, 2.593, n = 5,...,20.
missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
N 76537 230 3         N ← X R 76491 H
missing citation
M 74060 241 3 H (0.3)        M ← X R 74019 H
missing citation
L 72727 218 3 H 3        L ← X R 72674 H
missing citation
Several groups of diffuse emission bands in the region 23600 - 50000 cm-1 have been assigned Venkateswarlu, 1947 to transitions from four states at 47000, 55534, 61444, 66500 cm-1 to various repulsive states arising from Br(2P3/2,1/2) + Br(2P3/2,1/2) .
Venkateswarlu, 1947
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
(K ) 4           (K) ← X 
Venkateswarlu, 1969
(K)  293 3 5         l → X R 62266 H
Haranath and Rao, 1958
(K )  426 3 5         M → X V 60879 H
Haranath and Rao, 1958
(K)  281 3 5         L → X R 59855 H
Haranath and Rao, 1958
  6          
Rao and Venkateswarlu, 1964
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
H (56820) 108 3 7 1.5        H → B (40890) 7
Verma, 1958
G 56337 (255) $eH         G → X $gR 56303 H
Haranath and Rao, 1958
F 52191 (120) 3 H         F → X 8 R 52090 H
Haranath and Rao, 1958
E 51634.0 150.9 3 0.495 9        E ↔ B 10 35724 3
Venkateswarlu and Verma, 1958; missing citation; Wieland, Tellinghuisen, et al., 1972
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
D 48499 162 3 0.29        D → B 32595
Venkateswarlu and Verma, 1958, 2
C 1Πu 1u (24000) 11          C 12 ← X (24000)
Cordes and Sponer, 1930; Aickin and Bayliss, 1938; Mulliken, 1940; Rees, 1947; Bayliss and Sullivan, 1954; Coxon, 1973
B 3Πu 0u+ 15902.47 167.607 Z 1.6361 13 -0.009369 0.059589 14 15 16 0.0004891  3.013E-08 17  2.67757 B ↔ X 12 18 16 R 15823.47 Z
missing citation; missing citation; Holzer, Murphy, et al., 1970; Barrow, Clark, et al., 1974; Ault, Howard, et al., 1975
A 3Πu 1u 13905 153 3 H 2.7 19  0.0588 20 21 (0.0008)    2.695 A ↔ X 12 18 21 R 13818 22
Horsley, 1967; missing citation; Coxon, 1972
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
X 1Σg+ 0 325.321 Z 1.0774 -0.002298 0.082107 23 0.0003187 -0.000001045 2.092E-08 17  2.28105 24  

Notes

1The interval of 3141 cm-1 between X1 2Π3/2 and X2 2Π1/2 of Br2+ derived from the Rydberg series does not agree with the value 2820 cm-1 from the photoelectron spectrum Cornford, Frost, et al., 1971. The discrepancy may be accounted for by assuming that instead of v'=0 as suggested in Venkateswarlu, 1969 the 2Π1/2 series listed here have v'=2 while the 2Π3/2 series have v'=1 (see 2).
2According to the photoionization and photoelectron value of the ionization potential (see 26) the five 2Π3/2 Rydberg series in the table refer to v'=l. Vibrational structure; see Venkateswarlu, 1969.
3Normal isotopic mixture.
4Extensive system of absorption bands in the region 59000 - 67000 cm-1; no analysis. This system may include transitions to the upper states of:
5a) emission systems of Haranath and Rao, 1958
6b) a long resonance series (63817 - 53779 cm-1).
7The vibrational analysis is doubtful since only v"=21-32 were observed. v00 (extrapolated) and Te are different from Verma, 1958 to allow for the new data on the B state Barrow, Clark, et al., 1974.
8System H-X of Haranath and Rao, 1958, not observed in absorption.
9ωeze= +0.000065; vibrational constants from the reanalysis Wieland, Tellinghuisen, et al., 1972 of the emission data of Venkateswarlu and Verma, 1958 and the absorption data of Briggs and Norrish, 1963. See 10 .
10It is not entirely certain that the lower state is B 3Πu,0+ and not A 3Πu,1.
11Several absorption continua beyond 19580 cm-1 corresponding to a number of electronic transitions including that to C 1Πu with maximum at 24000 cm-1.
12Also observed in magnetic circular dichroism Brith, Rowe, et al., 1975 and photofragment Oldman, Sander, et al., 1975 spectra. The latter authors confirm Mulliken's Mulliken, 1940 prediction that C 1Πu dissociates into 2Π3/2 + 2Π3/2 and observe evidence for several excited g states by two-photon photofragment studies near 28000 and 38000 cm-1.
13(for v≤8). Vibrational levels observed to v=55, dissociation limit (2P3/2+2P1/2) at 19579.76 cm-1 above X 1Σg+(v=0,J=0). See 16. Absorption in the B 0u+ continuum Bondybey, Bearder, et al., 1976.
14Hfs observed in v=12 (81Br2) and v=17(79Br2); see Eng and LaTourrette, 1974.
15Predissociation was observed Lum and McAfee, 1975, Lum and Hozack, 1975 for v=42, J=33 by the laser-molecular beam technique. B → X emitted in the recombination of Br(2P3/2) atoms shows strong enhancement of bands with 5<v'< 10 presumably on account of inverse predissociation Clyne, Coxon, et al., 1971. See also 18.
16RKR potential function and Franck-Condon factors Coxon, 1971, Barrow, Clark, et al., 1974. For the behavior of the potential function near the dissociation limit 13 see Goscinski, 1972, Yee and Stone, 1973, LeRoy, 1974.
17Dv and higher order constants in Barrow, Clark, et al., 1974.
18Estimated radiative lifetimes for A and B range from 1000 to 2000 and 12 to 70 μs, respectively Coxon, 1972, Coxon, 1973, Bondybey, Bearder, et al., 1976. For the B state Capelle, Sakurai, et al., 1971 find total lifetimes of the order of 1 μs; minima (~0.2 μs) occur for v=1 and 14 probably on account of predissociation. For lifetimes near the dissociation limit 13 of B see McAfee and Hozack, 1976.
19Convergence limit for 79Br2 at 15894.6 cm-1 above X 1Σg+ (v=0,J=0), corresponding to 2P3/2 + 2P3/2. A weak continuous spectrum joins onto the limit and overlaps the main absorption system B ← X; see Sulzmann, Bien, et al., 1967.
20Extrapolated from v=7; constants for v=0.. .6 have not been determined. Bv, Dv, Hv, and Λ-type doubling constants for v=7...24 in Coxon, 1972.
21RKR potential function and Franck-Condon factors Coxon, 1972.
22Based on ΔG'(v=0-7) from low-resolution emission spectra Clyne and Coxon, 1967 of normal Br2 and the origin of the 7-0 79Br2 band at 14739.14 cm-1 derived from Coxon, 1972 and Barrow, Clark, et al., 1974.
23RKR potential curve Coxon, 1971, Barrow, Clark, et al., 1974. Hfs observed Eng and LaTourrette, 1974 in v=4 (81Br2) and v=7 (79Br2).
24Raman sp. 29
25From Barrow, Clark, et al., 1974; corresponding values for 79,81Br2 and 81Br2 are 1.97082 and 1.97095 eV (short extrapolation of B 0u+)
26From photoionization Dibeler, Walker, et al., 1970; supported by measurements at different temperatures. In good agreement with 10.51 eV obtained by photoelectron spectroscopy Frost, McDowell, et al., 1967, Cornford, Frost, et al., 1971, Potts and Price, 1971. A slightly higher value, 10.56 eV, was derived Venkateswarlu, 1969 from the Rydberg series in the VUV. It is probable that this value refers to v'=1.
27System J-X of Haranath and Rao, 1958, not observed in absorption.
28(valid for v≤8).
29Resonance Raman spectra in the gas Holzer, Murphy, et al., 1970, 2, Baierl and Kiefer, 1975, in solid argon Ault, Howard, et al., 1975; pure rotational Raman spectrum Baierl, Hochenbleicher, et al., 1975.

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Weber, 1912
Weber, H.C.P., J. Am. Chem. Soc., 1912, 34, 1294. [all data]

Serullas, 1827
Serullas, New Compounds of Bromine. Ethyl Bromide ("Ether Hydro-Bromique"), and Cyanogen Bromide ("Cyanure de Brome"). Solidification of Bromine and of Bromform ("Hydro-carbure de Brome"), Ann. Chim. Phys., 1827, 34, 95. [all data]

Blair and Ihle, 1973
Blair, A.; Ihle, H., The thermal decomposition and thermodynamic properties of uranium pentabromide, Journal of Inorganic and Nuclear Chemistry, 1973, 35, 11, 3795-3803, https://doi.org/10.1016/0022-1902(73)80071-5 . [all data]

Fischer and Bingle, 1955
Fischer, Jack; Bingle, James, The Vapor Pressure of Bromine from 24 to 116° 1, J. Am. Chem. Soc., 1955, 77, 24, 6511-6512, https://doi.org/10.1021/ja01629a026 . [all data]

Giauque and Wiebe, 1928
Giauque, W.F.; Wiebe, R., THE HEAT CAPACITY OF HYDROGEN BROMIDE FROM 15°K. TO ITS BOILING POINT AND ITS HEAT OF VAPORIZATION. THE ENTROPY FROM SPECTROSCOPIC DATA, J. Am. Chem. Soc., 1928, 50, 8, 2193-2202, https://doi.org/10.1021/ja01395a018 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Nolan, López de la Vega, et al., 1986
Nolan, S.P.; López de la Vega, R.; Hoff, C.D., J. Organometal. Chem., 1986, 315, 187. [all data]

Nizzi, Pommerening, et al., 1998
Nizzi, K.E.; Pommerening, C.A.; Sunderlin, L.S., Gas-phase thermochemistry of polyhalide anions, J. Phys. Chem. A, 1998, 102, 39, 7674-7679, https://doi.org/10.1021/jp9824508 . [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Lister, 1941
Lister, M.W., Heats of organic reactions. X. Heats of bromination of cyclic olefins, J. Am. Chem. Soc., 1941, 63, 143-149. [all data]

Conn, Kistiakowsky, et al., 1938
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VII. Addition of halogens to olefins, J. Am. Chem. Soc., 1938, 60, 2764-2771. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Benson and Buss, 1957
Benson, S.W.; Buss, J.H., The thermodynamics of bromination of toluene and the heat of formation of the benzyl radical, J. Phys. Chem., 1957, 61, 104-109. [all data]

Dunning and Pritchard, 1972
Dunning, B.K.; Pritchard, H.O., The enthalpy of formation of bromophosgene, J. Chem. Thermodyn., 1972, 4, 213-218. [all data]

Schumacher and Bergmann, 1931
Schumacher, H.-J.; Bergmann, P., Die kinetik und photochemie des bromphosgens, Z. Phys. Chem., 1931, 13, 269-284. [all data]

Clarke and Price, 1968
Clarke, W.D.; Price, S.J.W., Can. J. Chem., 1968, 46, 1633. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

Hartley, Pritchard, et al., 1950
Hartley, K.; Pritchard, H.O.; Skinner, H.A., Thermochemistry of metallic alkyls. III.?mercury dimethyl and mercury methyl halides, Trans. Faraday Soc., 1950, 46, 1019, https://doi.org/10.1039/tf9504601019 . [all data]

Pedley and Skinner, 1959
Pedley, J.B.; Skinner, H.A., Thermochemistry of metallic alkyls. Part 9.?Heats of bromination of some organo-tin compounds, Trans. Faraday Soc., 1959, 55, 544, https://doi.org/10.1039/tf9595500544 . [all data]

Pedley, Skinner, et al., 1957
Pedley, J.B.; Skinner, H.A.; Chernick, C.L., Thermochemistry of metallic alkyls. Part 8.?Tin tetramethyl, and hexamethyl distannane, Trans. Faraday Soc., 1957, 53, 1612, https://doi.org/10.1039/tf9575301612 . [all data]

Koros, Orban, et al., 1979
Koros, E.; Orban, M.; Nagy, Z., Calorimetric studies on the Belousov-Zhabotinsky oscillatory chemical reaction, Acta Chim. Acad. Sci. Hung., 1979, 100, 449-461. [all data]

King, Golden, et al., 1971
King, K.D.; Golden, D.M.; Benson, S.W., Thermochemistry of the gas-phase equilibrium CH3COCH3 + Br2 = CH3COCH2Br + HBr. The enthalpy of formation of bromoacetone, J. Chem. Thermodyn., 1971, 3, 129-134. [all data]

Connor, Zafarani-Moattar, et al., 1982
Connor, J.A.; Zafarani-Moattar, M.T.; Bickerton, J.; El-Saied, N.I.; Suradi, S.; Carson, R.; Al Takkhin, G.; Skinner, H.A., Organomet., 1982, 1, 1166. [all data]

Ashcroft, Carson, et al., 1963
Ashcroft, S.J.; Carson, A.S.; Pedley, J.B., Thermochemistry of reductions caused by lithium aluminium hydride. Part 2.-The heats of formation of benzyl bromide, benzyl iodide and the benzyl radical, Trans. Faraday Soc., 1963, 59, 2713-2717. [all data]

Akkerman, Schat, et al., 1983
Akkerman, O.S.; Schat, G.; Evers, E.A.I.M.; Bickelhaupt, F., Recl. Trav. Chim. Pays-Bas, 1983, 102, 109. [all data]

Lacher, Casali, et al., 1956
Lacher, J.R.; Casali, L.; Park, J.D., Reaction heats of organic halogen compounds V. The vapor phase bromination of tetrafluoroethylene and trifluorochloroethylene, J. Phys. Chem., 1956, 60, 608-610. [all data]

Chernick, Skinner, et al., 1956
Chernick, C.L.; Skinner, H.A.; Wadso, I., Thermochemistry of metallic alkyls. Part 7.-The heat of formation of mercury diphenyl, and of mercury phenyl chloride, Trans. Faraday Soc., 1956, 52, 1088-1093. [all data]

Adams, Carson, et al., 1966
Adams, G.P.; Carson, A.S.; Laye, P.G., Thermochemistry of reductions caused by lithium aluminium hydride. Part 4.-Heat of formation of methyl bromide, Trans. Faraday Soc., 1966, 62, 1447-1449. [all data]

Jwo, Huang, et al., 1987
Jwo, J-J.; Huang, C-Y.; Chang, E-F.; Wu, R.R., Kinetic study of the bromine-catalyzed isomerization of methyl- and chloro-maleic acids in aqueous Ce(IV)-Br- -H2SO4 medium, J. Chin. Chem. Soc. (Taipei), 1987, 34, 247-256. [all data]

Ashcroft, Carson, et al., 1965
Ashcroft, S.J.; Carson, A.S.; Carter, W.; Laye, P.G., Thermochemistry of reductions caused by lithium aluminium hydride. Part 3.- The C-halogen bond dissociation energies in ethyl iodine and ethyl bromide, Trans. Faraday Soc., 1965, 61, 225-229. [all data]

Mendenhall, Golden, et al., 1973
Mendenhall, G.D.; Golden, D.M.; Benson, S.W., Thermochemistry of the bromination of carbon tetrachloride and the heat of formation of carbon tetrachloride, J. Phys. Chem., 1973, 77, 2707-2709. [all data]

Okafo and Whittle, 1974
Okafo, E.N.; Whittle, E., Bond dissociation energies from equilibrium studies. Part 5.-The equilibria Br2 + CH2F2 = HBr + CHF2Br and Br2 + CH3F = HBr + CH2FBr. Determination of D(CHF2-Br) and ΔH°f (CHF2Br,g), Trans. Faraday Soc., 1974, 17, 1366-1375. [all data]

Corbett, Tarr, et al., 1963
Corbett, P.; Tarr, A.M.; Whittle, E., Vapour-phase bromination of fluoroform and methane, Trans. Faraday Soc., 1963, 59, 1609. [all data]

King, Golden, et al., 1971, 2
King, K.D.; Golden, D.M.; Benson, S.W., Kinetics and thermochemistry of the gas-phase bromination of bromoform. The C-H bond dissociation energy in CHBr3 and the C-Br bond dissociation energy in CBr4, J. Phys. Chem., 1971, 75, 987-989. [all data]

Coomber and Whittle, 1967
Coomber, J.W.; Whittle, E., Bond dissociation energies from equilibrium studies. Part 1.-D(CF3-Br), D(C2F5-Br) and D(n-C3F7-Br), Trans. Faraday Soc., 1967, 63, 608-619. [all data]

Ferguson, Okafo, et al., 1973
Ferguson, K.C.; Okafo, E.N.; Whittle, E., Bond dissociation energies from equilibrium studies Part 4.-The equilibrium Br2 + CH4 = HBr + CH3Br. Determination of D(CH3-Br) and ΔHf°(CH3Br,g), J. Chem. Soc. Faraday Trans. 1, 1973, 69, 295-301. [all data]

Sunner and Wulff, 1974
Sunner, S.; Wulff, C.A., The enthalpy of formation of 1,1-dibromo-2-methylpropane, J. Chem. Thermodyn., 1974, 6, 287-292. [all data]

Venkateswarlu, 1947
Venkateswarlu, P., Emission bands of halogens. Part IV. Diffuse bands of bromine, Proc. Indian Acad. Sci. Sect. A, 1947, 25, 138. [all data]

Venkateswarlu, 1969
Venkateswarlu, P., The vacuum ultraviolet spectrum of the bromine molecule, Can. J. Phys., 1969, 47, 2525. [all data]

Haranath and Rao, 1958
Haranath, P.B.V.; Rao, P.T., Band spectra of iodine, chlorine, and bromine in the spectral region 2400-1400 A, J. Mol. Spectrosc., 1958, 2, 428. [all data]

Rao and Venkateswarlu, 1964
Rao, Y.V.; Venkateswarlu, P., Vacuum ultraviolet resonance spectrum of Br2 molecule, J. Mol. Spectrosc., 1964, 13, 288. [all data]

Verma, 1958
Verma, R.D., Emission spectrum of bromine excited in the presence of argon. Part III. The band system in the region 2660-2590 Å, Proc. Indian Acad. Sci. Sect. A, 1958, 47, 196. [all data]

Venkateswarlu and Verma, 1958
Venkateswarlu, P.; Verma, R.D., Emission spectrum of bromine excited in the presence of argon-Part I, Proc. Indian Acad. Sci. Sect. A, 1958, 46, 251. [all data]

Wieland, Tellinghuisen, et al., 1972
Wieland, K.; Tellinghuisen, J.B.; Nobs, A., The band systems E → B(4000-4360 Å) and F → X(2530-2740 Å) of 127I2 and 129I2, and the corresponding system E = B of Br2 and Cl2, J. Mol. Spectrosc., 1972, 41, 69. [all data]

Venkateswarlu and Verma, 1958, 2
Venkateswarlu, P.; Verma, R.D., Emission spectrum of bromine excited in the presence of argon. Part II. The band system in the region 3150-2970 Å, Proc. Indian Acad. Sci. Sect. A, 1958, 46, 416. [all data]

Cordes and Sponer, 1930
Cordes, H.; Sponer, H., Die molekulabsorption des chlors, broms, jodchlorids und jodbromids im aubersten ultraviolett, Z. Phys., 1930, 63, 334. [all data]

Aickin and Bayliss, 1938
Aickin, R.G.; Bayliss, N.S., The absorption spectrum of bromine vapour in the region 3400 A to 2200 A, Trans. Faraday Soc., 1938, 34, 1371. [all data]

Mulliken, 1940
Mulliken, R.S., Halogen molecule spectra. II. Interval relations and relative intensities in the long wave-length spectra, Phys. Rev., 1940, 57, 500. [all data]

Rees, 1947
Rees, A.L.G., Note on the interpretation of the visible absorption spectrum of bromine, Proc. Phys. Soc. London, 1947, 59, 1008. [all data]

Bayliss and Sullivan, 1954
Bayliss, N.S.; Sullivan, J.V., Vacuum ultraviolet absorption spectra of iodine and bromine, J. Chem. Phys., 1954, 22, 1615. [all data]

Coxon, 1973
Coxon, J.A., Chapt. 4. Low-lying electronic states of diatomic halogen molecules in Molecular Spectroscopy. Volume 1, Barrow,R.F.; Long,D.A.; Millen,D.J., ed(s)., The Chemical Society, Burlington House, London, W1V 0BN, 1973, 177-228. [all data]

Holzer, Murphy, et al., 1970
Holzer, W.; Murphy, W.F.; Bernstein, H.J., Resonance fluorescence of iodine, bromine, and chlorine gases obtained with argon-ion laser excitation, J. Chem. Phys., 1970, 52, 469. [all data]

Barrow, Clark, et al., 1974
Barrow, R.F.; Clark, T.C.; Coxon, J.A.; Yee, K.K., The B3Π0u+ - X1Σg+ system of Br2 rotational analysis, Franck-Condon factors, and long range potential in the B0u+ state, J. Mol. Spectrosc., 1974, 51, 428. [all data]

Ault, Howard, et al., 1975
Ault, B.S.; Howard, W.F.; Andrews, L., Laser-induced fluorescence and Raman spectra of chlorine and bromine molecules isolated in inert matrices, J. Mol. Spectrosc., 1975, 55, 217. [all data]

Horsley, 1967
Horsley, J.A., Rotational analysis of the A3Π1u - X1Σg+ system of bromine, J. Mol. Spectrosc., 1967, 22, 469. [all data]

Coxon, 1972
Coxon, J.A., The extreme red absorption spectrum of Br2, A3Π(1u) ← X1Σg+, J. Mol. Spectrosc., 1972, 41, 548. [all data]

Cornford, Frost, et al., 1971
Cornford, A.B.; Frost, D.C.; McDowell, C.A.; Ragle, J.L.; Stenhouse, I.A., Photoelectron spectra of the halogens, J. Chem. Phys., 1971, 54, 2651. [all data]

Briggs and Norrish, 1963
Briggs, A.G.; Norrish, R.G.W., Transient absorption spectra of chlorine and bromine, Proc. R. Soc. London A, 1963, 276, 51. [all data]

Brith, Rowe, et al., 1975
Brith, M.; Rowe, M.D.; Schnepp, O.; Stephens, P.J., The magnetic circular dichroism spectrum of the halogen molecules I2, Br2, Cl2. Resolution of overlapping continua, Chem. Phys., 1975, 9, 57. [all data]

Oldman, Sander, et al., 1975
Oldman, R.J.; Sander, R.K.; Wilson, K.R., Photofragment spectrum of bromine, J. Chem. Phys., 1975, 63, 4252. [all data]

Bondybey, Bearder, et al., 1976
Bondybey, V.E.; Bearder, S.S.; Fletcher, C., Br2B3Π(0u+) excitation spectra and radiative lifetimes in rare gas solids, J. Chem. Phys., 1976, 64, 5243. [all data]

Eng and LaTourrette, 1974
Eng, R.S.; LaTourrette, J.T., Hyperfine spectra of bromine vapor near 633 nm, J. Mol. Spectrosc., 1974, 52, 269. [all data]

Lum and McAfee, 1975
Lum, R.M.; McAfee, K.B., Jr., Direct measurement of spontaneous predissociation using coaxial laser-molecular beams, J. Chem. Phys., 1975, 63, 5029. [all data]

Lum and Hozack, 1975
Lum, R.M.; Hozack, R.S., Identification of selectively excited transitions in Br2 isotopes at 5145 Å, J. Mol. Spectrosc., 1975, 58, 325-327. [all data]

Clyne, Coxon, et al., 1971
Clyne, M.A.A.; Coxon, J.A.; Woon-Fat, A.R., Electronic excitation of bromine to the B3Π(0u+) state in the recombination of ground state Br2P2/3 atoms, Trans. Faraday Soc., 1971, 67, 3155. [all data]

Coxon, 1971
Coxon, J.A., The calculation of potential energy curves of diatomic molecules: application to halogen molecules, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 443. [all data]

Goscinski, 1972
Goscinski, O., Outer vibrational turning points near dissociation in the B(3Π0u+) state of Br2 and Cl2, Mol. Phys., 1972, 24, 655. [all data]

Yee and Stone, 1973
Yee, K.K.; Stone, T.J., Analysis of RKR long-range potentials of the B3Π0u+ states of Br2 and Cl2, Mol. Phys., 1973, 26, 1169. [all data]

LeRoy, 1974
LeRoy, R.J., Long-range potential coefficients from RKR turning points: C6 and C8 for B(3Π0u+)-state Cl2, Br2, and I2, Can. J. Phys., 1974, 52, 246. [all data]

Capelle, Sakurai, et al., 1971
Capelle, G.; Sakurai, K.; Broida, H.P., Lifetimes and self-quenching cross sections of cibrational levels in the B state of bromine excited by a tunable dye laser, J. Chem. Phys., 1971, 54, 1728. [all data]

McAfee and Hozack, 1976
McAfee, K.B., Jr.; Hozack, R.S., Lifetimes and energy transfer near the dissociation limit in bromine, J. Chem. Phys., 1976, 64, 2491. [all data]

Sulzmann, Bien, et al., 1967
Sulzmann, K.G.P.; Bien, F.; Penner, S.S., Intensity and collision half-width measurements using a laser source. II. Continuum and line absorption of Br2 at 6328 A, J. Quant. Spectrosc. Radiat. Transfer, 1967, 7, 969. [all data]

Clyne and Coxon, 1967
Clyne, M.A.A.; Coxon, J.A., The emission spectra of Br2 and IBr formed in atomic recombination processes, J. Mol. Spectrosc., 1967, 23, 258. [all data]

Dibeler, Walker, et al., 1970
Dibeler, V.H.; Walker, J.A.; McCulloh, K.E., Threshold for molecular photoionization of bromine, J. Chem. Phys., 1970, 53, 4715. [all data]

Frost, McDowell, et al., 1967
Frost, D.C.; McDowell, C.A.; Vroom, D.A., Photoelectron spectra of the halogens and the hydrogen halides, J. Chem. Phys., 1967, 46, 4255. [all data]

Potts and Price, 1971
Potts, A.W.; Price, W.C., Photoelectron spectra of the halogens and mixed halides ICI and lBr, J. Chem. Soc. Faraday Trans., 1971, 67, 1242. [all data]

Holzer, Murphy, et al., 1970, 2
Holzer, W.; Murphy, W.F.; Bernstein, H.J., Resonance Raman effect and resonance fluoroscence in halogen gases, J. Chem. Phys., 1970, 52, 399. [all data]

Baierl and Kiefer, 1975
Baierl, P.; Kiefer, W., Hot band and isotopic structure in the resonance Raman spectrum of bromine vapor, J. Chem. Phys., 1975, 62, 306. [all data]

Baierl, Hochenbleicher, et al., 1975
Baierl, P.; Hochenbleicher, J.G.; Kiefer, W., Pure rotational Raman spectra of 79Br2 and 81Br2, Appl. Spectrosc., 1975, 29, 356. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Constants of diatomic molecules, References