2-Hexene, (Z)-
- Formula: C6H12
- Molecular weight: 84.1595
- IUPAC Standard InChIKey: RYPKRALMXUUNKS-HYXAFXHYSA-N
- CAS Registry Number: 7688-21-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Stereoisomers:
- Other names: cis-2-Hexene; (Z)-2-Hexene; (Z)-2-C6H12; 2-Hexene, cis-; (Z)-hex-2-ene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Donald R. Burgess, Jr.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -47.0 ± 1.1 | kJ/mol | Chyd | Rogers, Crooks, et al., 1987 | Value computed using ΔfHliquid° from Rogers, Crooks, et al., 1987 and ΔvapH° value of 32.2 kJ/mol from Steele and Chirico, 1993. |
ΔfH°gas | -47.5 ± 1.1 | kJ/mol | Chyd | Rogers and Crooks, 1983 | Value computed using ΔfHliquid° from Rogers and Crooks, 1983 and ΔvapH° value of 32.2 kJ/mol from Steele and Chirico, 1993. |
ΔfH°gas | -49.4 | kJ/mol | N/A | Wiberg and Wasserman, 1981 | Value computed using ΔfHliquid° value of -80.12±0.84 kj/mol from Wiberg and Wasserman, 1981 and ΔvapH° value of 30.7 kj/mol from alkenes correlation. |
ΔfH°gas | -47.9 ± 1.0 | kJ/mol | Eqk | Wiberg and Wasserman, 1981 | Value computed using ΔfHliquid° from Wiberg and Wasserman, 1981 and ΔvapH° value of 32.2 kJ/mol from Steele and Chirico, 1993. |
ΔfH°gas | -53.3 ± 1.2 | kJ/mol | Chyd | Rogers, Papadimetriou, et al., 1975 | Value computed using ΔfHliquid° from Rogers, Papadimetriou, et al., 1975 and ΔvapH° value of 32.2 kJ/mol from Steele and Chirico, 1993. |
Phase change data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 342.0 ± 0.2 | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 130. ± 3. | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 132.030 | K | N/A | Messerly, Todd, et al., 1990 | Uncertainty assigned by TRC = 0.003 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 31.5 | kJ/mol | N/A | Reid, 1972 | AC |
ΔvapH° | 31.5 | kJ/mol | V | Camin and Rossini, 1956 | ALS |
ΔvapH° | 31.5 | kJ/mol | N/A | Camin and Rossini, 1956, 2 | Based on data from 298. to 342. K.; AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
32.2 | 293. | A | Stephenson and Malanowski, 1987 | Based on data from 278. to 343. K.; AC |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
8.87823 | 132.030 | Messerly, Todd, et al., 1990, 2 | DH |
8.88 | 132. | Messerly, Todd, et al., 1990, 2 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
67.24 | 132.030 | Messerly, Todd, et al., 1990, 2 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: H2 + C6H12 = C6H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -119.5 ± 0.69 | kJ/mol | Chyd | Rogers, Crooks, et al., 1987 | liquid phase |
ΔrH° | -119.0 ± 0.78 | kJ/mol | Chyd | Rogers and Crooks, 1983 | liquid phase; solvent: Hexane |
ΔrH° | -113.2 ± 0.92 | kJ/mol | Chyd | Rogers, Papadimetriou, et al., 1975 | liquid phase; solvent: Hexane |
By formula: C6H12 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -7.8 ± 0.2 | kJ/mol | Eqk | Wiberg and Wasserman, 1981 | liquid phase; Trifluoroacetolysis |
ΔrH° | -11.5 ± 1.0 | kJ/mol | Ciso | Bartolo and Rossini, 1960 | liquid phase; Calculated from ΔHc |
By formula: C2HF3O2 + C6H12 = C8H13F3O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -42.76 ± 0.13 | kJ/mol | Eqk | Wiberg and Wasserman, 1981 | liquid phase; Trifluoroacetolysis |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
NIST MS number | 498 |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Rogers, Crooks, et al., 1987
Rogers, D.W.; Crooks, E.; Dejroongruang, K.,
Enthalpies of hydrogenation of the hexenes,
J. Chem. Thermodyn., 1987, 19, 1209-1215. [all data]
Steele and Chirico, 1993
Steele, W.V.; Chirico, R.D.,
Thermodynamic properties of alkenes (mono-olefins larger than C4),
J. Phys. Chem. Ref. Data, 1993, 22, 377-430. [all data]
Rogers and Crooks, 1983
Rogers, D.W.; Crooks, E.L.,
Enthalpies of hydrogenation of the isomers of n-hexene,
J. Chem. Thermodyn., 1983, 15, 1087-1092. [all data]
Wiberg and Wasserman, 1981
Wiberg, K.B.; Wasserman, D.J.,
Enthalpies of hydration of alkenes. 1. The n-hexenes,
J. Am. Chem. Soc., 1981, 103, 6563-6566. [all data]
Rogers, Papadimetriou, et al., 1975
Rogers, D.W.; Papadimetriou, P.M.; Siddiqui, N.A.,
An improved hydrogen microcalorimeter for use with large molecules,
Mikrochim. Acta, 1975, 2, 389-400. [all data]
Messerly, Todd, et al., 1990
Messerly, J.F.; Todd, S.S.; Finke, H.L.; Lee-Bechtold, S.H.; Guthrie, G.B.; Steele, W.V.; Chirico, R.D.,
Heat capacities of pent-1-ene (10 K to 320 K), cis-hex-2-ene (10 K to 330 K), non-1-ene (10 K to 400 K) and hexadec-1-ene (10 K to 400 K),
J. Chem. Thermodyn., 1990, 22, 1107-28. [all data]
Reid, 1972
Reid, Robert C.,
Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00,
AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637
. [all data]
Camin and Rossini, 1956
Camin, D.L.; Rossini, F.D.,
Physical properties of the 17 isomeric hexenes of the API research series,
J. Phys. Chem., 1956, 60, 1446. [all data]
Camin and Rossini, 1956, 2
Camin, David L.; Rossini, Frederick D.,
Physical Properties of the 17 Isomeric Hexenes.of the API Research Series,
J. Phys. Chem., 1956, 60, 10, 1446-1451, https://doi.org/10.1021/j150544a029
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Messerly, Todd, et al., 1990, 2
Messerly, J.F.; Todd, S.S.; Finke, H.L.; Lee-Bechtold, S.H.; Guthrie, G.B.; Steele, W.V.; Chirico, R.D.,
Heat capacities of pent-1-ene (10K to 320K), cis-hex-2-ene (10K to 330K), non-1-ene (10K to 400K), and hexadec-1-ene (10K to 400K),
J. Chem. Thermodynam., 1990, 22, 1107-1128. [all data]
Bartolo and Rossini, 1960
Bartolo, H.F.; Rossini, F.D.,
Heats of isomerization of the seventeen isomeric hexenes,
J. Phys. Chem., 1960, 64, 1685-1689. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References
- Symbols used in this document:
Tboil Boiling point Tfus Fusion (melting) point Ttriple Triple point temperature ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.