sodium fluoride


Gas phase thermochemistry data

Go To: Top, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas-69.419kcal/molReviewChase, 1998Data last reviewed in December, 1968
Quantity Value Units Method Reference Comment
gas,1 bar52.005cal/mol*KReviewChase, 1998Data last reviewed in December, 1968

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 3500. to 6000.
A 8.832601
B 0.256658
C -0.025239
D 0.002151
E -0.066425
F -72.28740
G 62.24589
H -69.42001
ReferenceChase, 1998
Comment Data last reviewed in December, 1968

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through March, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 23Na19F
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
The electron energy loss spectrum has peaks at 5.7, 7.7, (18.5), 32.5 eV.
Geiger and Pfeiffer, 1968
Continuous absorption above 41000 cm-1.
Muller, 1927
A 1           A ← X 
Barrow and Caunt, 1953
X 1Σ+ 0 536 2 3 (Z) 3.4 2  0.43690127 0.00455869 2.335E-5 1.161E-6  1.925947 4  
Ritchie and Lew, 1964; Baikov and Vasilevskii, 1967
Rotation sp.
Bauer and Lew, 1963; Hollowell, Hebert, et al., 1964; Veazey and Gordy, 1965
Mol. beam rf electric 5
Hollowell, Hebert, et al., 1964; Graff and Werth, 1965
and magnetic reson.
Zeiger and Bolef, 1952; Logan, Cote, et al., 1952; Cote and Kusch, 1953

Notes

1Fluxuation bands in absorption from 39350 to 36600 cm-1.
2From the IR spectrum Ritchie and Lew, 1964, Baikov and Vasilevskii, 1967.
3For IR frequencies in low-temperature rare gas matrices, see Snelson and Pitzer, 1963.
4Rot.-vibr. sp. 3
5μel[D] = 8.1235 + 0.0644(v+1/2) + 0.00037(v+1/2)2, v≤2 Hollowell, Hebert, et al., 1964, Graff and Werth, 1965; see also Bauer and Lew, 1963. Na quadrupole coupling constant, dependence on v Bauer and Lew, 1963, Hollowell, Hebert, et al., 1964, Graff and Werth, 1965; earlier, less accurate values by the magnetic resonance method Zeiger and Bolef, 1952, Logan, Cote, et al., 1952, Cote and Kusch, 1953.
6Value recommended by Ham, 1974 and based on the highest Na levels observed in chemiluminescent emission from the reaction Na2 + F > NaF + Na*. It is in agreement with the flame-photometric value (5.25 eV) of Bulewicz, Phillips, et al., 1961, but substantially higher than the thermochemical value (4.93 eV) given by Brewer and Brackett, 1961 or derived from the data in Stull and Prophet, 1971.

References

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Geiger and Pfeiffer, 1968
Geiger, J.; Pfeiffer, H.-C., Untersuchung der Anregung innerer Elektronen von Alkalihalogenidmolekulen im Energieverlustspektrum von 25 keV-Elektronen, Z. Phys., 1968, 208, 105. [all data]

Muller, 1927
Muller, L.A., 4. absorptionsspektren der alkalihalogenide in wasseriger losung und im dampf, Ann. Phys. (Leipzig), 1927, 82, 39. [all data]

Barrow and Caunt, 1953
Barrow, R.F.; Caunt, A.D., The ultra-violet absorption spectra of some gaseous alkali-metal halides and the dissociation energy of fluorine, Proc. R. Soc. London A, 1953, 219, 120. [all data]

Ritchie and Lew, 1964
Ritchie, R.K.; Lew, H., Infrared spectra of NaF and KF, Can. J. Phys., 1964, 42, 43. [all data]

Baikov and Vasilevskii, 1967
Baikov, V.I.; Vasilevskii, K.P., Infrared spectra of sodium, potassium, rubidium, and cesium fluoride vapors, Opt. Spectrosc. Engl. Transl., 1967, 22, 198, In original 364. [all data]

Bauer and Lew, 1963
Bauer, R.K.; Lew, H., Rotational constants and electric dipole moment of NaF, Can. J. Phys., 1963, 41, 1461. [all data]

Hollowell, Hebert, et al., 1964
Hollowell, C.D.; Hebert, A.J.; Street, K., Jr., Radio-frequency and microwave spectra of NaF by the molecular-beam electric-resonance method, J. Chem. Phys., 1964, 41, 3540. [all data]

Veazey and Gordy, 1965
Veazey, S.E.; Gordy, W., Millimeter-wave molecular-beam spectroscopy: alkali fluorides, Phys. Rev. A: Gen. Phys., 1965, 138, 1303. [all data]

Graff and Werth, 1965
Graff, G.; Werth, G., Gleichzeitige Messung von Hyperfeinstruktur, Starkeffekt und Zeemaneffekt des 23Na19F mit einer Molekulstrahl-Resonanzapparatur, Z. Phys., 1965, 183, 223. [all data]

Zeiger and Bolef, 1952
Zeiger, H.J.; Bolef, D.I., Molecular beam magnetic resonance spectra of TlCl35 and TlCl37 at zero field, Phys. Rev., 1952, 85, 788. [all data]

Logan, Cote, et al., 1952
Logan, R.A.; Cote, R.E.; Kusch, P., The sign of the quadrupole interaction energy in diatomic molecules, Phys. Rev., 1952, 86, 280. [all data]

Cote and Kusch, 1953
Cote, R.E.; Kusch, P., Low frequency resonances in the spectra of diatomic molecules, Phys. Rev., 1953, 90, 103. [all data]

Snelson and Pitzer, 1963
Snelson, A.; Pitzer, K.S., Infrared spectra by matrix isolation of lithium fluoride, lithium chloride and sodium fluoride, J. Phys. Chem., 1963, 67, 882. [all data]

Ham, 1974
Ham, D.O., Energy limits in chemiluminescent, atom transfer reactions: bond dissociation energy of NaF, J. Chem. Phys., 1974, 60, 1802. [all data]

Bulewicz, Phillips, et al., 1961
Bulewicz, E.M.; Phillips, L.F.; Sugden, T.M., Determination of dissociation constants and heats of formation of simple molecules by flame photometry. Part 8. Stabilities of the gaseous diatomic halides of certain metals, Trans. Faraday Soc., 1961, 57, 921. [all data]

Brewer and Brackett, 1961
Brewer, L.; Brackett, E., The dissociation energies of gaseous alkali halides, Chem. Rev., 1961, 61, 425. [all data]

Stull and Prophet, 1971
Stull, D.R.; Prophet, H., JANAF Thermochemical Tables. Second Edition, Office of SRD (NSRDS-NBS 37), Washington, D.C., 1971, 0. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References