Sodium hydride


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas124.27kJ/molReviewChase, 1998Data last reviewed in March, 1963
Quantity Value Units Method Reference Comment
gas,1 bar188.39J/mol*KReviewChase, 1998Data last reviewed in March, 1963

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 900.900. to 6000.
A 18.5825236.93146
B 44.534081.254473
C -40.17540-0.061337
D 13.647160.004417
E 0.145980-1.442456
F 117.5629109.3011
G 200.0835227.0556
H 124.2652124.2652
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in March, 1963 Data last reviewed in March, 1963

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfsolid-56.44kJ/molReviewChase, 1998Data last reviewed in March, 1963
Quantity Value Units Method Reference Comment
solid40.03J/mol*KReviewChase, 1998Data last reviewed in March, 1963

Solid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1500.
A 22.24729
B 71.68112
C -43.55126
D 9.435674
E -0.321076
F -66.96785
G 45.62610
H -56.44216
ReferenceChase, 1998
Comment Data last reviewed in March, 1963

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Na- + Hydrogen cation = Sodium hydride

By formula: Na- + H+ = HNa

Quantity Value Units Method Reference Comment
Δr1444.0 ± 2.0kJ/molD-EAPatterson, Hotop, et al., 1974gas phase
Quantity Value Units Method Reference Comment
Δr1423.5 ± 2.4kJ/molH-TSPatterson, Hotop, et al., 1974gas phase

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess

Quantity Value Units Method Reference Comment
Proton affinity (review)1095.kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity1070.6kJ/molN/AHunter and Lias, 1998HL

De-protonation reactions

Na- + Hydrogen cation = Sodium hydride

By formula: Na- + H+ = HNa

Quantity Value Units Method Reference Comment
Δr1444.0 ± 2.0kJ/molD-EAPatterson, Hotop, et al., 1974gas phase; B
Quantity Value Units Method Reference Comment
Δr1423.5 ± 2.4kJ/molH-TSPatterson, Hotop, et al., 1974gas phase; B

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through March, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 23NaH
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Extensive theoretical calculations have been made of X 1Σ+ Cade and Huo, 1967 Sachs, Hinze, et al., 1975 Meyer and Rosmus, 1975 [see also Varshni and Shukla, 1963 Cade, Bader, et al., 1969] and of A 1Σ+, B 1Π, a 3Σ+, b 3Π, c 3Σ+ Sachs, Hinze, et al., 1975; B, a, and c are predicted to be unstable. The calculations of Sachs, Hinze, et al., 1975 include transition moments, band strengths, line strengths, and the farwing broadening of the sodium D line; see also Watson, Stewart, et al., 1976. Additional higher excited states have been computed by Numrich and Truhlar, 1975.
b 3Π (30940) 1 (419) 1 (50) 1  (3.53) 1 (0.85) 1    (2.22) 1  
A 1Σ+ 22719 310.6 $cZ   1.696 2   2.27E-4 3  3.209 A ↔ X 4 R 22294.5 Z
missing citation; missing citation; Olsson, 1935; Pankhurst, 1949
X 1Σ+ 0 1172.2 Z 19.72 5 0.160 4.9012 0.1353 6  3.32E-4 6  1.8874  

Notes

1Theoretical predictions of Sachs, Hinze, et al., 1975 who feel, however, that the true potential of this state is considerably deeper than the calculated potential curve.
2B1= 1.823, B2= 1.875, B3= 1.908, B4= 1.930, B5= 1.938, B6= 1.941, B7= 1.936 Pankhurst, 1949.
3He ~ +5.7E-8 Pankhurst, 1949; both Dv and Hv decrease with increasing v.
4Radiative lifetimes τ(v'=3;J'=8) = 24.0 ns, τ(4;11) = 28.3 ns; τ(5;16) = 27.1 ns Baltayan, Jourdan, et al., 1976; τ(8;3) = 22.7 ns Dagdigian, 1976.
5ωeze = -0.005 Pankhurst, 1949.
6Rotational constants from Olsson, 1935, βe = -0.03E-4. Pankhurst, 1949 gives Be = 4.886, αe = 0.129, De ~ 3.15E-4, He ~ +1.7E-8 but includes only levels with v" ≥ 3.
7Theoretica1 value as modified by Meyer and Rosmus, 1975; the computational results are De0 = 1.92 Meyer and Rosmus, 1975 and 1.88 eV Sachs, Hinze, et al., 1975. Extrapolation of the ground state vibrational levels suggests 2.1 eV.
8Anomalous potential curve [an RKR curve has been constructed by Jain and Sah, 1963]; ΔG(3/2)= 329.9, ΔG(5/2)= 337.2, ΔG(7/2)= 343.7, ΔG(9/2)= 349.6, ΔG(11/2)= 353.9, ΔG(13/2)= 357.4, ΔG(15/2)= 359.2, ΔG(17/2)= 360.3, ΔG(19/2)= 360.1, ΔG(21/2)= 359.5, ΔG(23/2)= 357.7, ΔG(25/2)= 354.3, ΔG(27/2)= 352.3, ΔG(29/2)= 348.4, ΔG(31/2)= 343.9, ΔG(33/2)= 340.0,ΔG(35/2)= 333.7, ΔG(37/2)= 330.0, ΔG(39/2)= 323.7 [from band origins Pankhurst, 1949].
9ΔG(15/2)= 255.05, ΔG(17/2)= 256.92, ΔG(19/2)= 258.48, ΔG(21/2)= 259.39, ΔG(23/2)= 260.04, ΔG(25/2)= 260.22, ΔG(27/2)= 260.08, ΔG(29/2)= 259.61, ΔG(31/2)= 258.85, ΔG(33/2)= 257.6 (from band origins).
10B7= 1.010, B8= 1.012, B9= 1.012, B10= 1.010, B11= 1.007, B12= 1.003, B13= 0.998, B14= 0.991, B15= 0.984, B16= 0.975, B17= 0.95.
11D7...Dl7 = 0.53E-4...0.44E-4.

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Patterson, Hotop, et al., 1974
Patterson, T.A.; Hotop, H.; Kasdan, A.; Norcross, D.W.; Lineberger, W.C., Resonances in Alkali Negative-Ion Photodetachment and Electron Affinities of the Corresponding Neutrals, Phys. Rev. Lett., 1974, 32, 5, 189, https://doi.org/10.1103/PhysRevLett.32.189 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Cade and Huo, 1967
Cade, P.E.; Huo, W.M., Electronic structure of diatomic molecules. VII.A. Hartree-Fock wavefunctions and energy quantities for the ground states of the second-row hydrides, AH, J. Chem. Phys., 1967, 47, 649. [all data]

Sachs, Hinze, et al., 1975
Sachs, E.S.; Hinze, J.; Sabelli, N.H., MCSCF calculations for six states of NaH, J. Chem. Phys., 1975, 62, 3367. [all data]

Meyer and Rosmus, 1975
Meyer, W.; Rosmus, P., PNO-Cl and CEPA studies of electron correlation effects. III. Spectroscopic constants and dipole moment functions for the ground states of the first-row and second-row diatomic hydrides, J. Chem. Phys., 1975, 63, 2356. [all data]

Varshni and Shukla, 1963
Varshni, Y.P.; Shukla, R.C., Alkali hydride molecules: potential energy curves and the nature of their binding, Rev. Mod. Phys., 1963, 35, 130. [all data]

Cade, Bader, et al., 1969
Cade, P.E.; Bader, R.F.W.; Henneker, W.H.; Keaveny, I., Molecular charge distributions and chemical binding. IV. The second-row diatomic hydrides AH, J. Chem. Phys., 1969, 50, 5313. [all data]

Watson, Stewart, et al., 1976
Watson, D.K.; Stewart, R.F.; Dalgarno, A., Variational time-dependent Hartree-Fock calculations. A pseudopotential study of the alkali metal hydrides, Mol. Phys., 1976, 32, 1661. [all data]

Numrich and Truhlar, 1975
Numrich, R.W.; Truhlar, D.G., Mixing of ionic and covalent configurations for NaH, KH, and MgH+. Potential energy curves and couplings between molecular states, J. Phys. Chem., 1975, 79, 2745. [all data]

Olsson, 1935
Olsson, E., Das absorptionsspektrum des NaD, Z. Phys., 1935, 93, 206. [all data]

Pankhurst, 1949
Pankhurst, R.C., The emission spectrum of sodium hydride, Proc. Phys. Soc. London Sect. A, 1949, 62, 191. [all data]

Baltayan, Jourdan, et al., 1976
Baltayan, P.; Jourdan, A.; Nedelec, O., Radiative lifetime of NaH A1Σ+ in a high frequency discharge, Phys. Lett. A, 1976, 58, 443. [all data]

Dagdigian, 1976
Dagdigian, P.J., Detection of LiH and NaH molecular beams by laser fluorescence and measurement of radiative lifetimes of the A1Σ+ state, J. Chem. Phys., 1976, 64, 2609. [all data]

Jain and Sah, 1963
Jain, D.C.; Sah, P., Potential-energy curves of the excited states of alkali hydride molecules, J. Chem. Phys., 1963, 38, 1553. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References