1-Pentene, 2-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydrogen + 1-Pentene, 2-methyl- = Pentane, 2-methyl-

By formula: H2 + C6H12 = C6H14

Quantity Value Units Method Reference Comment
Δr-116.3 ± 0.43kJ/molChydRogers, Crooks, et al., 1987liquid phase
Δr-115.6 ± 2.2kJ/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Dioxane

2-Pentene, 2-methyl- = 1-Pentene, 2-methyl-

By formula: C6H12 = C6H12

Quantity Value Units Method Reference Comment
Δr4.73 ± 0.63kJ/molEqkYursha and Kabo, 1976liquid phase; At 394.5K
Δr6.07 ± 0.88kJ/molEqkRadyuk, Kabo, et al., 1972gas phase; At 503 K

1-Pentene, 2-methyl- + Hydrogen chloride = Pentane, 2-chloro-2-methyl-

By formula: C6H12 + HCl = C6H13Cl

Quantity Value Units Method Reference Comment
Δr-64.7 ± 1.4kJ/molCmArnett and Pienta, 1980liquid phase; solvent: Methylene chloride; Hydrochlorination

1-Hexene = 1-Pentene, 2-methyl-

By formula: C6H12 = C6H12

Quantity Value Units Method Reference Comment
Δr-17.6 ± 0.92kJ/molCisoBartolo and Rossini, 1960liquid phase; Calculated from ΔHc

Anisole, p(α-chloro-p-methylbenzyl)- + 1-Pentene, 2-methyl- = C21H27ClO

By formula: C15H15ClO + C6H12 = C21H27ClO

Quantity Value Units Method Reference Comment
Δr-83.5 ± 5.7kJ/molCmSchade, Mayr, et al., 1988liquid phase; solvent: Methylene chloride

(p-Methoxyphenyl)phenylmethyl chloride + 1-Pentene, 2-methyl- = C20H25ClO

By formula: C14H13ClO + C6H12 = C20H25ClO

Quantity Value Units Method Reference Comment
Δr-84.5 ± 6.3kJ/molCmSchade, Mayr, et al., 1988liquid phase; solvent: Methylene chloride

2-Pentene, 4-methyl- = 1-Pentene, 2-methyl-

By formula: C6H12 = C6H12

Quantity Value Units Method Reference Comment
Δr1.6 ± 0.2kJ/molEqkYursha and Kabo, 1976liquid phase; At 394.5K

2-Pentene, 4-methyl-, (Z)- = 1-Pentene, 2-methyl-

By formula: C6H12 = C6H12

Quantity Value Units Method Reference Comment
Δr-2.0 ± 0.3kJ/molEqkYursha and Kabo, 1976liquid phase; At 394.5K

1-Pentene, 2-methyl- = 1-Pentene, 4-methyl-

By formula: C6H12 = C6H12

Quantity Value Units Method Reference Comment
Δr6.90 ± 0.42kJ/molEqkYursha and Kabo, 1976liquid phase; At 394.5K

Henry's Law data

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0036 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.0036 LN/A 

References

Go To: Top, Reaction thermochemistry data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Rogers, Crooks, et al., 1987
Rogers, D.W.; Crooks, E.; Dejroongruang, K., Enthalpies of hydrogenation of the hexenes, J. Chem. Thermodyn., 1987, 19, 1209-1215. [all data]

Molnar, Rachford, et al., 1984
Molnar, A.; Rachford, R.; Smith, G.V.; Liu, R., Heats of hydrogenation by a simple and rapid flow calorimetric method, Appl. Catal., 1984, 9, 219-223. [all data]

Yursha and Kabo, 1976
Yursha, I.A.; Kabo, G.Ya., Equilibrium isomerisation and thermodynamic properties of 2-methylpentenes, Russ. J. Phys. Chem. (Engl. Transl.), 1976, 50, 330, In original 558. [all data]

Radyuk, Kabo, et al., 1972
Radyuk, Z.A.; Kabo, G.Ya.; Andreevskii, D.N., Equilibrium and thermodynamics of the isomerization of hexene isomers, Neftekhimiya, 1972, 12, 679-686. [all data]

Arnett and Pienta, 1980
Arnett, E.M.; Pienta, N.J., Stabilities of carbonium ions in solution. 12. Heats of formation of alkyl chlorides as an entree to heats of solvation of aliphatic carbonium ions, J. Am. Chem. Soc., 1980, 102, 3329-3334. [all data]

Bartolo and Rossini, 1960
Bartolo, H.F.; Rossini, F.D., Heats of isomerization of the seventeen isomeric hexenes, J. Phys. Chem., 1960, 64, 1685-1689. [all data]

Schade, Mayr, et al., 1988
Schade, C.; Mayr, H.; Arnett, E.M., Thermochemical study of the addition of carbenium ions to alkenes, J. Am. Chem. Soc., 1988, 110, 567-571. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Henry's Law data, References