Ethane, pentachloro-
- Formula: C2HCl5
- Molecular weight: 202.294
- IUPAC Standard InChIKey: BNIXVQGCZULYKV-UHFFFAOYSA-N
- CAS Registry Number: 76-01-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
View 3d structure (requires JavaScript / HTML 5) - Other names: Pentachloroethane; Pentalin; CHCl2CCl3; Ethane pentachloride; NCI-C53894; Pentachloorethaan; Pentachloraethan; Pentachlorethane; Pentacloroetano; Rcra waste number U184; UN 1669; Pentaline; Ethane, 1,1,1,2,2-pentachloro-
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Henry's Law data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -48.6 ± 1. | kcal/mol | Review | Manion, 2002 | weighted average of several measurements; DRB |
ΔfH°liquid | -45.6 | kcal/mol | Cm | Kirkbride, 1956 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -206.1 ± 2.0 | kcal/mol | Ccb | Smith, Bjellerup, et al., 1953 | Reanalyzed by Cox and Pilcher, 1970, Original value = -206. ± 3. kcal/mol; ALS |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
46.89 | 298. | Kurbatov, 1948 | T = 16 to 154°C, mean Cp, three temperatures.; DH |
Henry's Law data
Go To: Top, Condensed phase thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.54 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.46 | L | N/A | ||
0.40 | V | N/A | ||
0.41 | V | N/A |
IR Spectrum
Go To: Top, Condensed phase thermochemistry data, Henry's Law data, Gas Chromatography, References, Notes
Data compiled by: Coblentz Society, Inc.
- Not specified, most likely a prism, grating, or hybrid spectrometer.; DIGITIZED BY NIST FROM HARD COPY; 4 cm-1 resolution
- SOLUTION (10% IN CCl4 FOR 3800-1330, 10% IN CS2 FOR 1330-400 CM-1); DOW KBr FOREPRISM-GRATING; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Chromatography
Go To: Top, Condensed phase thermochemistry data, Henry's Law data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | OV-1 | 100. | 965. | Castello and Gerbino, 1988 | He, Chromosorb W DMCS; Column length: 3. m |
Packed | OV-1 | 125. | 978. | Castello and Gerbino, 1988 | He, Chromosorb W DMCS; Column length: 3. m |
Packed | OV-1 | 75. | 957. | Castello and Gerbino, 1988 | He, Chromosorb W DMCS; Column length: 3. m |
Kovats' RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | SP-1000 | 125. | 1454.62 | Castello and Gerbino, 1988 | He, Chromosorb W DMCS; Column length: 3. m |
Packed | SP-1000 | 75. | 1431.59 | Castello and Gerbino, 1988 | He, Chromosorb W DMCS; Column length: 3. m |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Petrocol DH | 951. | White, Hackett, et al., 1992 | 100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C |
Packed | SE-30 | 963.2 | Zilka and Matucha, 1978 | Ar, Chromaton N-AW-DMCS, 8. K/min; Column length: 2. m; Tstart: 40. C |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | OV-101 | 953. | Zenkevich, Eliseenkov, et al., 2011 | 25. m/0.20 mm/0.25 μm, Nitrogen, 6. K/min; Tstart: 40. C; Tend: 220. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Polydimethyl siloxanes | 953. | Zenkevich, Eliseenkov, et al., 2006 | Program: not specified |
Capillary | Methyl Silicone | 953. | Zenkevich, 2001 | Program: not specified |
Capillary | OV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc. | 950. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
Capillary | OV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc. | 965. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
References
Go To: Top, Condensed phase thermochemistry data, Henry's Law data, IR Spectrum, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Manion, 2002
Manion, J.A.,
Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons,
J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703
. [all data]
Kirkbride, 1956
Kirkbride, F.W.,
The heats of chlorination of some hydrocarbons and their chloro-derivatives,
J. Appl. Chem., 1956, 6, 11-21. [all data]
Smith, Bjellerup, et al., 1953
Smith, L.; Bjellerup, L.; Krook, S.; Westermark, H.,
Heats of combustion of organic chloro compounds determined by the "quartz wool" method,
Acta Chem. Scand., 1953, 7, 65. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Kurbatov, 1948
Kurbatov, V.Ya.,
Heat capacity of liquids. 2. Heat capacity and the temperature dependence of heat capacity from halogen derivatives of acylic hydrocarbons,
Zh. Obshch. Kim., 1948, 18, 372-389. [all data]
Castello and Gerbino, 1988
Castello, G.; Gerbino, T.C.,
Effect of Temperature on the Gas Chromatographic Separation of Halogenated Compounds on Polar and Non-Polar Stationary Phases,
J. Chromatogr., 1988, 437, 33-45, https://doi.org/10.1016/S0021-9673(00)90369-8
. [all data]
White, Hackett, et al., 1992
White, C.M.; Hackett, J.; Anderson, R.R.; Kail, S.; Spock, P.S.,
Linear temperature programmed retention indices of gasoline range hydrocarbons and chlorinated hydrocarbons on cross-linked polydimethylsiloxane,
J. Hi. Res. Chromatogr., 1992, 15, 2, 105-120, https://doi.org/10.1002/jhrc.1240150211
. [all data]
Zilka and Matucha, 1978
Zilka, L.; Matucha, M.,
Gas chromatographic analysis of chlorinated ethanes,
J. Chromatogr., 1978, 148, 1, 229-235, https://doi.org/10.1016/S0021-9673(00)99342-7
. [all data]
Zenkevich, Eliseenkov, et al., 2011
Zenkevich, I.G.; Eliseenkov, E.V.; Kasatochkin, A.N.; Ukolov, A.I.,
Identification of the products of nonregioselective organic reactions by chromatography - mass spectrometry: chloro derivatives of dialkyl ethers,
Rus. J. Anal. Chem., 2011, 66, 14, 1445-1454, https://doi.org/10.1134/S1061934811140218
. [all data]
Zenkevich, Eliseenkov, et al., 2006
Zenkevich, I.G.; Eliseenkov, E.V.; Kasatochkin, A.N.,
Application of Retention Indices in GC-MS Identification of Halogenated Organic Compounds,
Mass Spectromery (Rus.), 2006, 3, 2, 131-140. [all data]
Zenkevich, 2001
Zenkevich, I.G.,
Comparative Characterization of Conditions for Unambuguous Chromatographic Identification of Organic Compounds,
Zh. Anal. Khim., 2001, 56, 9, 915-924. [all data]
Waggott and Davies, 1984
Waggott, A.; Davies, I.W.,
Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Henry's Law data, IR Spectrum, Gas Chromatography, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.