Chloral

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-52.13kcal/molCmPritchard and Skinner, 1950Heat of hydrolysis; ALS

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
36.21298.von Reis, 1881T = 294 to 383 K.; DH

Phase change data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil371.0KN/AWeast and Grasselli, 1989BS
Tboil370.90KN/ALecat, 1926Uncertainty assigned by TRC = 0.5 K; TRC
Tboil369.55KN/AThorpe, 1880Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Δvap9.8kcal/molVWiberg, Morgan, et al., 1994ALS

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
8.75250.AStephenson and Malanowski, 1987Based on data from 235. to 371. K. See also Stull, 1947.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
235.4 to 370.84.322851466.442-31.765Stull, 1947Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Chloral + Water = Chloral Hydrate

By formula: C2HCl3O + H2O = C2H3Cl3O2

Quantity Value Units Method Reference Comment
Δr-12.37 ± 0.02kcal/molCmWiberg, Morgan, et al., 1994liquid phase
Δr-12.222 ± 0.037kcal/molEqkHenke, Hadad, et al., 1993liquid phase; solvent: Acetone

Sodium hydroxide + Chloral = sodium formate + Trichloromethane

By formula: HNaO + C2HCl3O = CHNaO2 + CHCl3

Quantity Value Units Method Reference Comment
Δr-24.58kcal/molCmPritchard and Skinner, 1950liquid phase; Heat of hydrolysis

Methyl Alcohol + Chloral = 2,2,2-trichloro-1-methoxyethanol

By formula: CH4O + C2HCl3O = 2,2,2-trichloro-1-methoxyethanol

Quantity Value Units Method Reference Comment
Δr-11.5kcal/molEqkJensen and Pedersen, 1971liquid phase; solvent: Heptane

Isopropyl Alcohol + Chloral = 2,2,2-trichloro-1-isopropoxyethanol

By formula: C3H8O + C2HCl3O = 2,2,2-trichloro-1-isopropoxyethanol

Quantity Value Units Method Reference Comment
Δr-9.95kcal/molEqkJensen and Pedersen, 1971liquid phase; solvent: Heptane

Ethanol + Chloral = 2,2,2-Trichloro-1-ethoxy ethanol

By formula: C2H6O + C2HCl3O = C4H7Cl3O2

Quantity Value Units Method Reference Comment
Δr-11.3kcal/molEqkJensen and Pedersen, 1971liquid phase; solvent: Heptane

Mass spectrum (electron ionization)

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Chemical Concepts
NIST MS number 159205

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Pritchard and Skinner, 1950
Pritchard, H.O.; Skinner, H.A., The heats of hydrolysis of chloral and bromal, and the C-C bond dissociation energies in chloral and bromal, J. Am. Chem. Soc., 1950, 1928-1931. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Lecat, 1926
Lecat, M., New binary azeotropes second list, Recl. Trav. Chim. Pays-Bas, 1926, 45, 620-627. [all data]

Thorpe, 1880
Thorpe, T.E., On the Relation Between the Molecular Weights of Substances and their Specific Gravities in the Liquid State, J. Chem. Soc., 1880, 37, 141. [all data]

Wiberg, Morgan, et al., 1994
Wiberg, K.B.; Morgan, K.M.; Maltz, H., Thermochemistry of carbonyl reactions. 6. A study of hydration equilibria, J. Am. Chem. Soc., 1994, 116, 11067-11077. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Henke, Hadad, et al., 1993
Henke, S.L.; Hadad, C.M.; Morgan, K.M.; Wiberg, K.B.; Wasserman, H.H., A theorectical and experimental investigation of vicinal tricarbonyl systems and their hydrates, J. Org. Chem., 1993, 58, 2830-2839. [all data]

Jensen and Pedersen, 1971
Jensen, R.B.; Pedersen, S.B., Reaction between chloral and alcohols. 9. Dissociation of chloral hemiacetals of some aliphatic primary and secondary alcohols, Acta Chem. Scand., 1971, 25, 2911-2930. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References