Butane, 2,2-dimethyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-51.01 ± 0.23kcal/molCcbProsen and Rossini, 1945ALS
Quantity Value Units Method Reference Comment
Δcliquid-991.52 ± 0.21kcal/molCcbProsen and Rossini, 1945Corresponding Δfliquid = -50.99 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid65.010cal/mol*KN/ADouslin and Huffman, 1946DH
liquid65.13cal/mol*KN/AKilpatrick and Pitzer, 1946DH
liquid64.39cal/mol*KN/AStull, 1937Extrapolation below 90 K, 17.76 cal/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
45.332298.15Ohnishi, Fujihara, et al., 1989DH
45.860298.15Costas, Huu, et al., 1988DH
45.860298.15Perez-Casas, Aicart, et al., 1988DH
45.277298.15Benson and D'Arcy, 1986DH
45.206298.15Aicart, Kumaran, et al., 1983DH
45.206298.15Benson, D'Arcy, et al., 1983DH
45.77300.Auerbach, Sage, et al., 1950T = 300 to 366 K. Cp given as 0.5312 Btu/lb*R at 80°F.; DH
45.110298.15Douslin and Huffman, 1946T = 13 to 300 K.; DH
44.67290.Kilpatrick and Pitzer, 1946T = 20 to 290 K.; DH
43.781298.1Stull, 1937T = 90 to 320 K.; DH

Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydrogen + 1-Butene, 3,3-dimethyl- = Butane, 2,2-dimethyl-

By formula: H2 + C6H12 = C6H14

Quantity Value Units Method Reference Comment
Δr-30.07 ± 0.13kcal/molChydRogers, Crooks, et al., 1987liquid phase
Δr-30.10 ± 0.15kcal/molChydDolliver, Gresham, et al., 1937gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -30.34 ± 0.15 kcal/mol; AT 355 °K

n-Hexane = Butane, 2,2-dimethyl-

By formula: C6H14 = C6H14

Quantity Value Units Method Reference Comment
Δr-3.49 ± 0.18kcal/molCisoProsen and Rossini, 1941liquid phase; Calculated from ΔHc

Butane, 2,2-dimethyl- = Hydrogen + 1-Butene, 3,3-dimethyl-

By formula: C6H14 = H2 + C6H12

Quantity Value Units Method Reference Comment
Δr30.1 ± 0.2kcal/molCmKennedy, Shomate, et al., 1938liquid phase

Henry's Law data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.00065 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.00059 LN/A 
0.00051 VN/A 

References

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Douslin and Huffman, 1946
Douslin, D.R.; Huffman, H.M., Low-temperature thermal data on the five isometric hexanes, J. Am. Chem. Soc., 1946, 68, 1704-1708. [all data]

Kilpatrick and Pitzer, 1946
Kilpatrick, J.E.; Pitzer, K.S., The thermodynamics of 2,2-dimethylbutane, including the heat capacity, heats of transitions, fusion and vaporization and the entropy, J. Am. Chem. Soc., 1946, 68, 1066-1072. [all data]

Stull, 1937
Stull, D.R., A semi-micro calorimeter for measuring heat capacities at low temperatures, J. Am. Chem. Soc., 1937, 59, 2726-2733. [all data]

Ohnishi, Fujihara, et al., 1989
Ohnishi, K.; Fujihara, I.; Murakami, S., Thermodynamic properties of decalins mixed with hexane isomers at 298.15K. 1. Excess enthalpies and excess isobaric heat capacities, Fluid Phase Equilib., 1989, 46, 59-72. [all data]

Costas, Huu, et al., 1988
Costas, M.; Huu, V.T.; Patterson, D.; Caceres-Alonso, M.; Tardajos, G.; Aicart, E., Liquid structure and second-order mixing functions for l-chloronaphthalene with linear and branched alkanes, J. Chem. Soc., Faraday Trans., 1988, 1 84(5), 1603-1616. [all data]

Perez-Casas, Aicart, et al., 1988
Perez-Casas, S.; Aicart, E.; Trojo, L.M.; Costas, M., Excess heat capacity. Chlorobenzene-2,2,4,4,6,8,8-heptamethylnonane, Int. Data Ser., Sel. Data Mixtures, 1988, (2)A, 123. [all data]

Benson and D'Arcy, 1986
Benson, G.C.; D'Arcy, P.J., Heat capacities of binary mixtures of n-octane with each of the hexane isomers at 298.15 K, Can. J. Chem., 1986, 64, 2139-2141. [all data]

Aicart, Kumaran, et al., 1983
Aicart, E.; Kumaran, M.K.; Halpin, C.J.; Benson, G.C., Ultrasonic speeds and isentropic compressibilities of 2-methylpentan-1-ol with hexane isomers at 298.15 K, J. Chem. Thermodynam., 1983, 15, 1189-1197. [all data]

Benson, D'Arcy, et al., 1983
Benson, G.C.; D'Arcy, P.J.; Sugamori, M.E., Heat capacities of binary mixtures of 1-hexanol with hexane isomers at 298.15 K, Thermochim. Acta, 1983, 71, 161-166. [all data]

Auerbach, Sage, et al., 1950
Auerbach, C.E.; Sage, B.H.; Lacey, W.N., Isobaric heat capacities at bubble point, Ind. Eng. Chem., 1950, 42, 110-113. [all data]

Rogers, Crooks, et al., 1987
Rogers, D.W.; Crooks, E.; Dejroongruang, K., Enthalpies of hydrogenation of the hexenes, J. Chem. Thermodyn., 1987, 19, 1209-1215. [all data]

Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E., Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons, J. Am. Chem. Soc., 1937, 59, 831-841. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Prosen and Rossini, 1941
Prosen, E.J.R.; Rossini, F.D., Heats of isomerization of the five hexanes, J. Res. NBS, 1941, 27, 289-310. [all data]

Kennedy, Shomate, et al., 1938
Kennedy, Wm.D.; Shomate, C.H.; Parks, G.P., Thermal data on organic compounds. XVIII. The heat capacity of and entropy of t-butylethylene, J. Am. Chem. Soc., 1938, 60, 1507-1509. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References