Trichloromonofluoromethane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
liquid225.60J/mol*KN/AOsborne, Garner, et al., 1941Value for saturated liquid.

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
122.5303.15Wirbser, Brauning, et al., 1992T = 288 to 503 K. p = 0.6 MPa.
121.55298.15Osborne, Garner, et al., 1941T = 15 to 290 K. Value for saturated liquid.
126.7298.15Benning, McHarness, et al., 1940T = 261 to 347 K. Data calculated from equation.

Phase change data

Go To: Top, Condensed phase thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil296.9KN/APCR Inc., 1990BS
Tboil296.8KN/AAltunin, Geller, et al., 1987Uncertainty assigned by TRC = 0.05 K; TRC
Quantity Value Units Method Reference Comment
Tfus162.KN/AWang, Adcock, et al., 1991Uncertainty assigned by TRC = 2. K; TRC
Tfus162.72KN/AOtt, Woodfield, et al., 1987Uncertainty assigned by TRC = 0.01 K; TRC
Tfus162.7KN/AGuanquan, Ott, et al., 1986Uncertainty assigned by TRC = 0.1 K; TRC
Tfus165.4KN/AMartin, 1982Uncertainty assigned by TRC = 0.2 K; TRC
Tfus162.67KN/AOtt, Goates, et al., 1964Uncertainty assigned by TRC = 0.05 K; TRC
Quantity Value Units Method Reference Comment
Ttriple162.6 ± 0.4KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Tc471.1KN/AWang, Adcock, et al., 1991Uncertainty assigned by TRC = 0.5 K; TRC
Tc471.15KN/AAltunin, Geller, et al., 1987Uncertainty assigned by TRC = 0.1 K; TRC
Tc471.15KN/AOkada, Uematsu, et al., 1986Uncertainty assigned by TRC = 0.04 K; Tc selected from literature to correlate density meas.; TRC
Tc471.15KN/ABenning and McHarness, 1940Uncertainty assigned by TRC = 0.4 K; by visual observation of the meniscus; TRC
Quantity Value Units Method Reference Comment
Pc44.66barN/AWang, Adcock, et al., 1991Uncertainty assigned by TRC = 0.12 bar; TRC
Pc43.70barN/AAltunin, Geller, et al., 1987Uncertainty assigned by TRC = 0.50 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.247l/molN/AWang, Adcock, et al., 1991Uncertainty assigned by TRC = 0.006 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc4.151mol/lN/AAltunin, Geller, et al., 1987Uncertainty assigned by TRC = 0.004 mol/l; ~; TRC
ρc4.03mol/lN/AOkada, Uematsu, et al., 1986Uncertainty assigned by TRC = 0.0403 mol/l; Density measured with magnetic densimeter. Tc, Dc selected from literature to correlate density measurements. R11; TRC
ρc4.03mol/lN/ABenning and McHarness, 1940Uncertainty assigned by TRC = 0.01 mol/l; by extrapolation of rectilinear diameter to critical temp.; TRC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
25.209290.40N/AOsborne, Garner, et al., 1941P = 80.33 kPA.; DH
28.5228.AStephenson and Malanowski, 1987Based on data from 213. to 301. K.; AC
28.2234.AStephenson and Malanowski, 1987Based on data from 213. to 249. K.; AC
25.6310.AStephenson and Malanowski, 1987Based on data from 295. to 363. K.; AC
24.7372.AStephenson and Malanowski, 1987Based on data from 357. to 429. K.; AC
25.1439.AStephenson and Malanowski, 1987Based on data from 424. to 468. K.; AC
27.3251.N/AKudchadker, Kudchadker, et al., 1979Based on data from 237. to 293. K.; AC
27.1276.N/AOsborne, Garner, et al., 1941Based on data from 237. to 293. K.; AC
25.2290.COsborne, Garner, et al., 1941AC
26.4259.N/ABenning and McHarness, 1940, 2Based on data from 244. to 334. K.; AC

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
86.81290.40Osborne, Garner, et al., 1941P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
236.48 to 293.044.028081051.836-35.287Osborne, Garner, et al., 1941Coefficents calculated by NIST from author's data.
243.50 to 334.304.014471043.303-36.602Benning and McHarness, 1940, 2Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
6.8936162.68Osborne, Garner, et al., 1941DH
6.9162.7Domalski and Hearing, 1996AC
7.900165.4Martin, 1982, 2DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
42.38162.68Osborne, Garner, et al., 1941DH
47.8165.4Martin, 1982, 2DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Henry's Law data

Go To: Top, Condensed phase thermochemistry data, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0103100.LN/A 
0.0081 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.00993500.XN/A 
0.0112700.MN/A 
0.017740.XN/A 
0.0092 LN/A 
0.0012 MPearson and McConnell, 1975The same data was also published in missing citation. Value at T = 293. K.
0.0082 CN/A 

References

Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Osborne, Garner, et al., 1941
Osborne, D.W.; Garner, C.S.; Doescher, R.N.; Yost, D.M., The heat capacity, entropy, heats of fusion and vaporization and vapor pressure of fluorotrichloromethane, J. Am. Chem. Soc., 1941, 63, 3496-3499. [all data]

Wirbser, Brauning, et al., 1992
Wirbser, H.; Brauning, G.; Ernst, G., Flow-calorimetric specific heat capacities of the refrigerants CFCl3 (R11) and CF2ClCFCl2 (R113) at pressures between 0.6 MPa and 30 MPa and temperatures between 288.15 and 503.15 K, J. Chem. Thermodynam., 1992, 24, 783-784. [all data]

Benning, McHarness, et al., 1940
Benning, A.F.; McHarness, R.C.; Markwood, W.H., Jr.; Smith, W.J., Thermodynamic properties of fluorochloromethanes and -ethanes. Heat capacity of the liquid and vapor of three fluorochloromethanes and trifluorotrichloroethane, Ind. and Eng. Chem., 1940, 32, 976-980. [all data]

PCR Inc., 1990
PCR Inc., Research Chemicals Catalog 1990-1991, PCR Inc., Gainesville, FL, 1990, 1. [all data]

Altunin, Geller, et al., 1987
Altunin, V.V.; Geller, V.Z.; Kremenvskaya, E.A.; Perel'shtein, I.I.; Petrov, E.K., Thermophysical Properties of Freons, Methane Ser. Part 2, Vol. 9, NSRDS-USSR, Selover, T. B., Ed., Hemisphere, New York, 1987. [all data]

Wang, Adcock, et al., 1991
Wang, B.H.; Adcock, J.L.; Mathur, S.B.; Van Hook, W.A., Vapor pressures, liquid molar volumes, vapor non-idealities, and critical properties of some fluorinated ethers: CF3OCF2OCF3, CF3OCF2CF2H, c-CF2CF2 CF2O, CF3OCF2H, and CF3OCH3; and of CCl3F and CF2CI, J. Chem. Thermodyn., 1991, 23, 699-710. [all data]

Ott, Woodfield, et al., 1987
Ott, J.B.; Woodfield, B.F.; Guanquan, C.; Boerio-Goates, J.; Goates, J.R., (Solid + Liquid) Phase Equilibriain Acetonitrile + Tetrachloromethane, + Trichloromethane, + Trichlorofluoromethane, and + 1,1,1-Trichlorotrifluoromethane, J. Chem. Thermodyn., 1987, 19, 177. [all data]

Guanquan, Ott, et al., 1986
Guanquan, C.; Ott, J.B.; Goates, J.R., (Solid+liquid) phase equilibria and solid-compound formation in 1,2-dimethoxyethane+tetrachloromethane, +trichlorofluoromethane, and +trichloromethane, J. Chem. Thermodyn., 1986, 18, 31. [all data]

Martin, 1982
Martin, C.A., Specific heat anomalies in some organic compounds in Therm. Anal., Proc. Int. Conf., 7th, 2, 1982. [all data]

Ott, Goates, et al., 1964
Ott, J.B.; Goates, J.R.; Mangelson, N.F., Solid compound formation in the ccl(4) mixtures of p-dioxane with ccl(4), cbrcl(3), and cfcl(3): solid-liquid phase equilibria in binary and cfcl(3) systems, J. Chem. Eng. Data, 1964, 9, 203. [all data]

Okada, Uematsu, et al., 1986
Okada, M.; Uematsu, M.; Watanabe, K., Orthobaric liquid densities of trichloro-fluoromethane, dichlorodi-fluoromethane, chlorodifluoromethane, 1,1,2-trichlorotrifluoroethane, 1,2-dichlorotetrafluoroethane, and of the azeotropic mixtur, J. Chem. Thermodyn., 1986, 18, 527. [all data]

Benning and McHarness, 1940
Benning, A.F.; McHarness, R.C., Thermodynamic Properties of Fluorochloromethanes and -Ethanes densities and critical constants of three fluorochloromethanes and trifluorotrichloroethane, Ind. Eng. Chem., 1940, 32, 814. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Kudchadker, Kudchadker, et al., 1979
Kudchadker, A.P.; Kudchadker, S.A.; Shukla, R.P.; Patnaik, P.R., Vapor pressures and boiling points of selected halomethanes, J. Phys. Chem. Ref. Data, 1979, 8, 2, 499, https://doi.org/10.1063/1.555600 . [all data]

Benning and McHarness, 1940, 2
Benning, A.F.; McHarness, R.C., Thermodynamic Properties of Fluorochloromethanes and -Ethanes Vapor Pressure of Three Fluorochloromethanes and Trifluorotichloroethane, Ind. Eng. Chem., 1940, 32, 4, 497-499, https://doi.org/10.1021/ie50364a011 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Martin, 1982, 2
Martin, C.A., Specific heat anomalies in some organic compounds, Therm. Anal., Proc. Int. Conf., 7th, 1982, 2, 829-835. [all data]

Pearson and McConnell, 1975
Pearson, C.R.; McConnell, G., Chlorinated C1 and C2 Hydrocarbons in the Marine Environment, Proc. R. Soc. London, B, 1975, 189, 305-332. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References