Trichloromonofluoromethane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas-288.70kJ/molReviewChase, 1998Data last reviewed in June, 1970
Δfgas-278. ± 8.8kJ/molCmBaibuz, 1961ALS
Δfgas-268.3 ± 8.4kJ/molCcbWartenberg and Schiefer, 1955Reanalyzed by Cox and Pilcher, 1970, Original value = -280. kJ/mol; ALS
Δfgas-290. ± 20.kJ/molCmKirkbride and Davidson, 1954Von Wartenberg method; ALS
Quantity Value Units Method Reference Comment
gas,1 bar309.74J/mol*KReviewChase, 1998Data last reviewed in June, 1970

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 600.600. to 6000.
A 34.06650106.2694
B 230.43091.245277
C -289.4558-0.292652
D 135.52480.022658
E -0.232263-3.710084
F -307.5847-331.8887
G 292.6202419.8728
H -288.6964-288.6964
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in June, 1970 Data last reviewed in June, 1970

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
liquid225.60J/mol*KN/AOsborne, Garner, et al., 1941Value for saturated liquid.

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
122.5303.15Wirbser, Brauning, et al., 1992T = 288 to 503 K. p = 0.6 MPa.
121.55298.15Osborne, Garner, et al., 1941T = 15 to 290 K. Value for saturated liquid.
126.7298.15Benning, McHarness, et al., 1940T = 261 to 347 K. Data calculated from equation.

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0103100.LN/A 
0.0081 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.00993500.XN/A 
0.0112700.MN/A 
0.017740.XN/A 
0.0092 LN/A 
0.0012 MPearson and McConnell, 1975The same data was also published in missing citation. Value at T = 293. K.
0.0082 CN/A 

Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   C     Symmetry Number σ = 3


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1 1 CF str 1085  C 1085 S gas 1090 VW p gas
a1 2 CCl3 s-str 535  C 535 M gas 535 VS p gas
a1 3 CCl3 s-deform 350  C 350 VS gas 349 S p gas
e 4 CCl3 d-deform 847  C 847 VS gas 847 M dp gas
e 5 CF bend 394  C 401 VW gas 394 S dp gas
e 6 CCl3 d-deform 241  C 241 S dp gas

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
VWVery weak
pPolarized
dpDepolarized
C3~6 cm-1 uncertainty

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Baibuz, 1961
Baibuz, V.F., Explosion method and heat of formation of CF4, CFCl, CFCl3, and CCl4, Dokl. Phys. Chem. (Engl. Transl.), 1961, 140, 786-788, In original 1358. [all data]

Wartenberg and Schiefer, 1955
Wartenberg, H.V.; Schiefer, J., Bildungswarmen von fluor-chlor-kohlenstoff-verbindungen, Z. Anorg. Chem., 1955, 278, 326-332. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Kirkbride and Davidson, 1954
Kirkbride, F.W.; Davidson, F.G., Heats of formation of gaseous fluoro- and fluorochloro-carbons, Nature (London), 1954, 174, 79-80. [all data]

Osborne, Garner, et al., 1941
Osborne, D.W.; Garner, C.S.; Doescher, R.N.; Yost, D.M., The heat capacity, entropy, heats of fusion and vaporization and vapor pressure of fluorotrichloromethane, J. Am. Chem. Soc., 1941, 63, 3496-3499. [all data]

Wirbser, Brauning, et al., 1992
Wirbser, H.; Brauning, G.; Ernst, G., Flow-calorimetric specific heat capacities of the refrigerants CFCl3 (R11) and CF2ClCFCl2 (R113) at pressures between 0.6 MPa and 30 MPa and temperatures between 288.15 and 503.15 K, J. Chem. Thermodynam., 1992, 24, 783-784. [all data]

Benning, McHarness, et al., 1940
Benning, A.F.; McHarness, R.C.; Markwood, W.H., Jr.; Smith, W.J., Thermodynamic properties of fluorochloromethanes and -ethanes. Heat capacity of the liquid and vapor of three fluorochloromethanes and trifluorotrichloroethane, Ind. and Eng. Chem., 1940, 32, 976-980. [all data]

Pearson and McConnell, 1975
Pearson, C.R.; McConnell, G., Chlorinated C1 and C2 Hydrocarbons in the Marine Environment, Proc. R. Soc. London, B, 1975, 189, 305-332. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume II, J. Phys. Chem. Ref. Data, 1972, 6, 3, 993-1102. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, References