Propylene oxide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-94.68 ± 0.63kJ/molCcbSinke and Hildenbrand, 1962Reanalyzed by Cox and Pilcher, 1970, Original value = -92.8 ± 1.1 kJ/mol; ALS
Δfgas-117.1kJ/molN/AMoureu and Dode, 1937Value computed using ΔfHliquid° value of -145.0 kj/mol from Moureu and Dode, 1937 and ΔvapH° value of 27.9 kj/mol from Sinke and Hildenbrand, 1962.; DRB
Quantity Value Units Method Reference Comment
gas287.40 ± 0.84J/mol*KN/AOetting F.L., 1964Other values of third-law entropy at 298.15 K are (in J/mol*K): 285.3(8.4) [ Beaumont R.H., 1966] and 288.4(0.8) [ Chao J., 1986].; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
39.74100.Chao J., 1986Selected thermodynamic functions are in close agreement with those calculated by [ Oetting F.L., 1964]. Entropy values calculated by [ Green, 1961] are lower than those given here by 6 J/mol*K.; GT
46.65150.
54.27200.
67.57273.15
72.55 ± 0.12298.15
72.92300.
92.99400.
110.99500.
126.16600.
138.89700.
149.68800.
158.91900.
166.851000.
173.701100.
179.621200.
184.741300.
189.191400.
193.061500.
200.701750.
206.302000.
210.402250.
213.502500.
215.902750.
217.803000.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-122.6 ± 0.63kJ/molCcbSinke and Hildenbrand, 1962Reanalyzed by Cox and Pilcher, 1970, Original value = -120.7 ± 1.1 kJ/mol; ALS
Δfliquid-145.kJ/molCcbMoureu and Dode, 1937ALS
Quantity Value Units Method Reference Comment
Δcliquid-1917.4 ± 1.1kJ/molCcbSinke and Hildenbrand, 1962Corresponding Δfliquid = -120.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1893.kJ/molCcbMoureu and Dode, 1937Corresponding Δfliquid = -145. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1885.kJ/molCcbZubow and Swietoslawski, 1925Corresponding Δfliquid = -153. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid196.27J/mol*KN/AOetting F.L., 1964DH
liquid194.6J/mol*KN/ABeaumont, Clegg, et al., 1966Extrapolation below 90 K, 485 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
122.19300.Tan, Zhou, et al., 1982T = 170 to 325 K.; DH
125.1298.15Beaumont, Clegg, et al., 1966T = 90 to 300 K.; DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Propylene oxide = Propanal

By formula: C3H6O = C3H6O

Quantity Value Units Method Reference Comment
Δr-98.7kJ/molEqkPolkovnikova and Lapiclus, 1974gas phase; At 300 K

Propylene oxide = Acetone

By formula: C3H6O = C3H6O

Quantity Value Units Method Reference Comment
Δr-124.kJ/molEqkPolkovnikova and Lapiclus, 1974gas phase; At 300 K

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
5.23500.XN/A

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Sinke and Hildenbrand, 1962
Sinke, G.C.; Hildenbrand, D.L., Heat of formation of propylene oxide, J. Chem. Eng. Data, 1962, 7, 74. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Moureu and Dode, 1937
Moureu, H.; Dode, M., Chaleurs de formation de l'oxyde d'ethylene, de l'ethanediol et de quelques homologues, Bull. Soc. Chim. France, 1937, 4, 637-647. [all data]

Oetting F.L., 1964
Oetting F.L., Low-temperature heat capacity and related thermodynamic functions of propylene oxide, J. Chem. Phys., 1964, 41, 149-153. [all data]

Beaumont R.H., 1966
Beaumont R.H., Heat capacities of propylene oxide and some polymers of ethylene and propylene oxides, Polymer, 1966, 7, 401-416. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Green, 1961
Green, J.H.S., The thermodynamic properties of propylene oxide, Chem. Ind. (London), 1961, 369. [all data]

Zubow and Swietoslawski, 1925
Zubow, P.W.; Swietoslawski, W., No. 21. - Sur la chaleur de combustion de trois oxydes(α), Bull. Soc. Chim. Fr., 1925, 37, 271-274. [all data]

Beaumont, Clegg, et al., 1966
Beaumont, R.H.; Clegg, B.; Gee, G.; Herbert, J.B.M.; Marks, D.J.; Roberts, R.C.; Sims, D., Heat capacities of propylene oxide and of some polymers of ethylene and propylene oxides, Polymer, 1966, 7, 401-416. [all data]

Tan, Zhou, et al., 1982
Tan, Z.; Zhou, L.; Chen, S.; Yin, A.; Sun, Y.; Ye, J., An adiabatic calorimeter for heat capacity measurements of pure silver and propylene oxide from 80 to 400K, Diwen Wuli, 1982, 4(4), 322-325. [all data]

Polkovnikova and Lapiclus, 1974
Polkovnikova, A.G.; Lapiclus, V.L., Calculation of the equilibrium and heat of isomerization of propylene oxide on a lithium phosphate catalyst, Neftekhimiya, 1974, 14, 113-115. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References