Methylamine, N,N-dimethyl-
- Formula: C3H9N
- Molecular weight: 59.1103
- IUPAC Standard InChIKey: GETQZCLCWQTVFV-UHFFFAOYSA-N
- CAS Registry Number: 75-50-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Trimethylamine; Methanamine, N,N-dimethyl-; TMA; UN 1083; UN 1297
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -5.67 ± 0.18 | kcal/mol | Eqk | Issoire and Long, 1960 | Heat of formation derived by Cox and Pilcher, 1970; ALS |
ΔfH°gas | -7.34 | kcal/mol | N/A | Lemoult, 1907 | Value computed using ΔfHliquid° value of -52.7 kj/mol from Lemoult, 1907 and ΔvapH° value of 22.0 kj/mol from Issoire and Long, 1960.; DRB |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -10.93 ± 0.17 | kcal/mol | Eqk | Issoire and Long, 1960 | Heat of formation derived by Cox and Pilcher, 1970; ALS |
ΔfH°liquid | -12.6 | kcal/mol | Ccb | Lemoult, 1907 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -593.7 | kcal/mol | Ccb | Muller, 1910 | At 288 K; ALS |
ΔcH°liquid | -580.8 | kcal/mol | Ccb | Lemoult, 1907 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 47.280 | cal/mol*K | N/A | Aston, Sagenkahn, et al., 1944 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
31.680 | 280. | Aston, Sagenkahn, et al., 1944 | T = 12 to 280 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 275. ± 5. | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 155.95 | K | N/A | Roberts, Emeleus, et al., 1939 | Uncertainty assigned by TRC = 0.2 K; TRC |
Tfus | 149.4 | K | N/A | Simon and Huter, 1935 | Uncertainty assigned by TRC = 0.5 K; TRC |
Tfus | 155.95 | K | N/A | Simon and Huter, 1935, 2 | Uncertainty assigned by TRC = 2. K; TRC |
Tfus | 155.85 | K | N/A | Wiberg and Sutterlin, 1935 | Uncertainty assigned by TRC = 0.5 K; TRC |
Tfus | 149.15 | K | N/A | Timmermans and Mattaar, 1921 | Uncertainty assigned by TRC = 1. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 156.08 | K | N/A | Aston, Sagenkahn, et al., 1944, 2 | Uncertainty assigned by TRC = 0.05 K; based on T0 = 273.16 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 433.2 | K | N/A | Majer and Svoboda, 1985 | |
Tc | 432.79 | K | N/A | Kay and Young, 1974 | Uncertainty assigned by TRC = 0.15 K; TRC |
Tc | 433.3 | K | N/A | Day and Felsing, 1950 | Uncertainty assigned by TRC = 0.3 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 40.34 | atm | N/A | Kay and Young, 1974 | Uncertainty assigned by TRC = 0.03 atm; TRC |
Pc | 40.2380 | atm | N/A | Day and Felsing, 1950 | Uncertainty assigned by TRC = 0.1052 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 30. | l/mol | N/A | Day and Felsing, 1950 | Uncertainty assigned by TRC = 0.07 l/mol; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 5.301 | kcal/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 5.26 ± 0.02 | kcal/mol | V | Issoire and Long, 1960 | Heat of formation derived by Cox and Pilcher, 1970; ALS |
ΔvapH° | 5.26 | kcal/mol | N/A | Issoire and Long, 1960 | DRB |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
5.4821 | 276.03 | N/A | Aston, Sagenkahn, et al., 1944 | P = 101.325 kPa; DH |
5.483 | 276. | N/A | Majer and Svoboda, 1985 | |
5.88 | 261. | A | Stephenson and Malanowski, 1987 | Based on data from 193. to 276. K. See also Aston, Sagenkahn, et al., 1944.; AC |
5.50 | 368. | N/A | Day and Felsing, 1950, 2 | Based on data from 333. to 403. K.; AC |
5.76 | 288. | N/A | Swift and Hochanadel, 1945 | Based on data from 273. to 313. K.; AC |
5.482 ± 0.007 | 276.03 | V | Aston, Sagenkahn, et al., 1944, 3 | ALS |
5.86 | 250. | C | Aston, Sagenkahn, et al., 1944 | AC |
5.820 | 276.2 | V | Thompson and Linnett, 1936 | ALS |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kcal/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
250. to 276. | 8.738 | 0.2824 | 433.2 | Majer and Svoboda, 1985 |
Entropy of vaporization
ΔvapS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
19.86 | 276.03 | Aston, Sagenkahn, et al., 1944 | P; DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
192.84 to 276.60 | 4.01042 | 970.297 | -34.06 | Aston, Sagenkahn, et al., 1944 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
1.564 | 156.08 | Aston, Sagenkahn, et al., 1944 | DH |
1.56 | 156.1 | Acree, 1991 | AC |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
10.02 | 156.08 | Aston, Sagenkahn, et al., 1944 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: Li+ + C3H9N = (Li+ • C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.1 | kcal/mol | ICR | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M |
ΔrH° | 40. | kcal/mol | ICR | Staley and Beauchamp, 1975 | gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28. | cal/mol*K | N/A | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 33. | kcal/mol | ICR | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M |
By formula: C3H10N+ + C3H9N = (C3H10N+ • C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22.0 | kcal/mol | PHPMS | El-Shall, Daly, et al., 1992 | gas phase; M |
ΔrH° | 22.0 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 22.6 | kcal/mol | MKER | Wei, Tzeng, et al., 1991 | gas phase; from graph; M |
ΔrH° | 22.5 | kcal/mol | PHPMS | Yamdagni and Kebarle, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.2 | cal/mol*K | PHPMS | El-Shall, Daly, et al., 1992 | gas phase; M |
ΔrS° | 27.2 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 32.0 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1973 | gas phase; M |
By formula: C3H9Sn+ + C3H9N = (C3H9Sn+ • C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 45.6 | kcal/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 32. | cal/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
28.8 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
(C3H10N+ • • ) + = (C3H10N+ • 2 • )
By formula: (C3H10N+ • H2O • C3H9N) + H2O = (C3H10N+ • 2H2O • C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.1 | kcal/mol | PHPMS | El-Shall, Daly, et al., 1992 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25. | cal/mol*K | N/A | El-Shall, Daly, et al., 1992 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
2.5 | 225. | PHPMS | El-Shall, Daly, et al., 1992 | gas phase; Entropy change calculated or estimated; M |
By formula: K+ + C3H9N = (K+ • C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.0 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23.4 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13.0 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M |
C3H8N- + =
By formula: C3H8N- + H+ = C3H9N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >406.22 ± 0.60 | kcal/mol | G+TS | MacKay and Bohme, 1978 | gas phase; Computations put dHacid ca. 412 kcal/mol; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | >398.00 | kcal/mol | IMRB | MacKay and Bohme, 1978 | gas phase; Computations put dHacid ca. 412 kcal/mol; B |
(C3H10N+ • ) + = (C3H10N+ • • )
By formula: (C3H10N+ • C3H9N) + CH4O = (C3H10N+ • CH4O • C3H9N)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.6 | kcal/mol | PHPMS | El-Shall, Daly, et al., 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.2 | cal/mol*K | PHPMS | El-Shall, Daly, et al., 1992 | gas phase; M |
(C3H10N+ • 2) + = (C3H10N+ • • 2)
By formula: (C3H10N+ • 2C3H9N) + H2O = (C3H10N+ • H2O • 2C3H9N)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.9 | kcal/mol | PHPMS | El-Shall, Daly, et al., 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.3 | cal/mol*K | PHPMS | El-Shall, Daly, et al., 1992 | gas phase; M |
(C3H10N+ • • ) + = (C3H10N+ • 2 • )
By formula: (C3H10N+ • CH4O • C3H9N) + CH4O = (C3H10N+ • 2CH4O • C3H9N)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.5 | kcal/mol | PHPMS | El-Shall, Daly, et al., 1992 | gas phase; M |
(C3H10N+ • • ) + = (C3H10N+ • 2 • )
By formula: (C3H10N+ • C3H9N • H2O) + C3H9N = (C3H10N+ • 2C3H9N • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.0 | kcal/mol | PHPMS | El-Shall, Daly, et al., 1992 | gas phase; M |
(C3H10N+ • 2) + = (C3H10N+ • 3)
By formula: (C3H10N+ • 2C3H9N) + C3H9N = (C3H10N+ • 3C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.5 | kcal/mol | MKER | Wei, Tzeng, et al., 1991 | gas phase; from graph; M |
(C3H10N+ • 3) + = (C3H10N+ • 4)
By formula: (C3H10N+ • 3C3H9N) + C3H9N = (C3H10N+ • 4C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.3 | kcal/mol | MKER | Wei, Tzeng, et al., 1991 | gas phase; from graph; M |
(C3H10N+ • 4) + = (C3H10N+ • 5)
By formula: (C3H10N+ • 4C3H9N) + C3H9N = (C3H10N+ • 5C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.8 | kcal/mol | MKER | Wei, Tzeng, et al., 1991 | gas phase; from graph; M |
(C3H10N+ • 5) + = (C3H10N+ • 6)
By formula: (C3H10N+ • 5C3H9N) + C3H9N = (C3H10N+ • 6C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.4 | kcal/mol | MKER | Wei, Tzeng, et al., 1991 | gas phase; from graph; M |
By formula: Na+ + C3H9N = (Na+ • C3H9N)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
19.0 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
(C3H10N+ • ) + = (C3H10N+ • 2)
By formula: (C3H10N+ • C3H9N) + C3H9N = (C3H10N+ • 2C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.9 | kcal/mol | MKER | Wei, Tzeng, et al., 1991 | gas phase; from graph; M |
By formula: 2C2H7N = CH5N + C3H9N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -3.15 | kcal/mol | Eqk | Issoire and Long, 1960 | gas phase; ALS |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference |
---|---|---|---|
9.5 | M | N/A |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Issoire and Long, 1960
Issoire, J.; Long, C.,
Etude de la thermodynamique chimique de la reaction de formation des methylamines,
Bull. Soc. Chim. France, 1960, 2004-2012. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Lemoult, 1907
Lemoult, M.P.,
Recherches theoriques et experimentales sur les chaleurs de combustion et de formation des composes organiques,
Ann. Chim. Phys., 1907, 12, 395-432. [all data]
Muller, 1910
Muller, J.-A.,
Sur les chaleurs de combustion et les poids specifiques des methylamines,
Ann. Chim. Phys., 1910, 20, 116-130. [all data]
Aston, Sagenkahn, et al., 1944
Aston, J.G.; Sagenkahn, M.L.; Szasa, G.J.; Moessen, G.W.; Zuhr, H.F.,
The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of trimethylamine. The entropy from spectroscopic and molecular data,
J. Am. Chem. Soc., 1944, 66, 1171-1177. [all data]
Roberts, Emeleus, et al., 1939
Roberts, E.R.; Emeleus, H.J.; Briscoe, H.V.A.,
Preparation and Prop. of Ethyldideuteramine and Dimethyldeuteramine,
J. Chem. Soc., 1939, 1939, 41. [all data]
Simon and Huter, 1935
Simon, A.; Huter, J.,
Vapor Pressure Curves, Melting Point and Chemical Constants of Dimethyl, Trimethyl- and Isobutylamines,
Z. Elektrochem., 1935, 41, 28. [all data]
Simon and Huter, 1935, 2
Simon, A.; Huter, J.,
Z. Elektrochem., 1935, 41, 294. [all data]
Wiberg and Sutterlin, 1935
Wiberg, E.; Sutterlin, W.,
The Vapor Pressures and Melting Points of Dimethyl- and Trimethylamine Trimethylamines,
Z. Elektrochem., 1935, 41, 151. [all data]
Timmermans and Mattaar, 1921
Timmermans, J.; Mattaar, J.F.,
Freezing points of orgainic substances VI. New experimental determinations.,
Bull. Soc. Chim. Belg., 1921, 30, 213. [all data]
Aston, Sagenkahn, et al., 1944, 2
Aston, J.G.; Sagenkahn, M.L.; Szasz, G.J.; Moessen, G.W.; Zuhr, H.F.,
The Heat Capacity and Entropy, Heats of Fusion and Vaporization and the Vapor Pressure of Trimethylamine. The Entropy From Spectroscopic and Molecular Data,
J. Am. Chem. Soc., 1944, 66, 1171. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Kay and Young, 1974
Kay, W.B.; Young, C.L.,
Int. DATA Ser., Sel. Data Mixtures, Ser. A, 1974, No. 2, 154. [all data]
Day and Felsing, 1950
Day, H.O.; Felsing, W.A.,
Some Vapor Pressures and the Critical COnstants of Trimethylamine,
J. Am. Chem. Soc., 1950, 72, 1698. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Day and Felsing, 1950, 2
Day, H.O.; Felsing, W.A.,
Some Vapor Pressures and the Critical Constants of Trimethylamine,
J. Am. Chem. Soc., 1950, 72, 4, 1698-1699, https://doi.org/10.1021/ja01160a077
. [all data]
Swift and Hochanadel, 1945
Swift, Elijah; Hochanadel, Helen Phillips,
The Vapor Pressure of Trimethylamine from 0 to 40°,
J. Am. Chem. Soc., 1945, 67, 5, 880-881, https://doi.org/10.1021/ja01221a508
. [all data]
Aston, Sagenkahn, et al., 1944, 3
Aston, J.G.; Sagenkahn, M.L.; Szasz, G.J.; Moessen, G.W.; Zuhr, H.F.,
The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of trimethylamine. The entropy from spectroscopic and molecular data,
J. Am. Chem. Soc., 1944, 66, 1171-11. [all data]
Thompson and Linnett, 1936
Thompson, H.W.; Linnett, J.W.,
The vapour pressures and association of some metallic and non-metallic alkyls,
Trans. Faraday Soc., 1936, 32, 681-685. [all data]
Acree, 1991
Acree, William E.,
Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation,
Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H
. [all data]
Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L.,
Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids,
J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024
. [all data]
Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P.,
Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n,
J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013
. [all data]
Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L.,
Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases,
J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050
. [all data]
El-Shall, Daly, et al., 1992
El-Shall, M.S.; Daly, G.M.; Gao, J.; Meot-Ner (Mautner), M.; Sieck, L.W.,
How Sensitive are Cluster Compositions to Energetics? A Joint Beam Expansion/ Thermochemical Study of Water - Methanol - Trimethylamine Clusters,
J. Phys. Chem., 1992, 96, 2, 507, https://doi.org/10.1021/j100181a002
. [all data]
Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M.,
Intermolecular Forces in Organic Clusters,
J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024
. [all data]
Wei, Tzeng, et al., 1991
Wei, S.; Tzeng, W.B.; Castleman, A.W.,
Structure of protonated solvation complexes - ammonia trimethylamine cluster ions and their metastable decompositions,
J. Phys. Chem., 1991, 95, 2, 585, https://doi.org/10.1021/j100155a019
. [all data]
Yamdagni and Kebarle, 1973
Yamdagni, R.; Kebarle, P.,
Gas - Phase Basicites of Amines. Hydrogen Bonding in Proton - Bound Amine Dimers and Proton - Induced Cyclization of alpha, omega - Diamines,
J. Am. Chem. Soc., 1973, 95, 11, 3504, https://doi.org/10.1021/ja00792a010
. [all data]
Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E.,
A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase,
Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]
Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P.,
Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M,
J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011
. [all data]
Davidson and Kebarle, 1976, 2
Davidson, W.R.; Kebarle, P.,
Ionic Solvation by Aprotic Solvents. Gas Phase Solvation of the Alkali Ions by Acetonitrile,
J. Am. Chem. Soc., 1976, 98, 20, 6125, https://doi.org/10.1021/ja00436a010
. [all data]
MacKay and Bohme, 1978
MacKay, G.I.; Bohme, D.K.,
Proton-Transfer Reactions in Nitromethane at 297K,
Int. J. Mass Spectrom. Ion Phys., 1978, 26, 4, 327, https://doi.org/10.1016/0020-7381(78)80052-7
. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°liquid Entropy of liquid at standard conditions T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ΔvapS Entropy of vaporization - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.