Methylamine, N,N-dimethyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Δfgas-23.7 ± 0.75kJ/molEqkIssoire and Long, 1960Heat of formation derived by Cox and Pilcher, 1970; ALS
Δfgas-30.7kJ/molN/ALemoult, 1907Value computed using ΔfHliquid° value of -52.7 kj/mol from Lemoult, 1907 and ΔvapH° value of 22.0 kj/mol from Issoire and Long, 1960.; DRB

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-45.73 ± 0.71kJ/molEqkIssoire and Long, 1960Heat of formation derived by Cox and Pilcher, 1970; ALS
Δfliquid-52.7kJ/molCcbLemoult, 1907ALS
Quantity Value Units Method Reference Comment
Δcliquid-2484.kJ/molCcbMuller, 1910At 288 K; ALS
Δcliquid-2430.kJ/molCcbLemoult, 1907ALS
Quantity Value Units Method Reference Comment
liquid197.82J/mol*KN/AAston, Sagenkahn, et al., 1944DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
132.55280.Aston, Sagenkahn, et al., 1944T = 12 to 280 K.; DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Lithium ion (1+) + Methylamine, N,N-dimethyl- = (Lithium ion (1+) • Methylamine, N,N-dimethyl-)

By formula: Li+ + C3H9N = (Li+ • C3H9N)

Quantity Value Units Method Reference Comment
Δr176.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Δr170.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr140.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M

C3H10N+ + Methylamine, N,N-dimethyl- = (C3H10N+ • Methylamine, N,N-dimethyl-)

By formula: C3H10N+ + C3H9N = (C3H10N+ • C3H9N)

Quantity Value Units Method Reference Comment
Δr92.0kJ/molPHPMSEl-Shall, Daly, et al., 1992gas phase; M
Δr92.0kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr94.6kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M
Δr94.1kJ/molPHPMSYamdagni and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr114.J/mol*KPHPMSEl-Shall, Daly, et al., 1992gas phase; M
Δr114.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr134.J/mol*KPHPMSYamdagni and Kebarle, 1973gas phase; M

C3H9Sn+ + Methylamine, N,N-dimethyl- = (C3H9Sn+ • Methylamine, N,N-dimethyl-)

By formula: C3H9Sn+ + C3H9N = (C3H9Sn+ • C3H9N)

Quantity Value Units Method Reference Comment
Δr191.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
120.525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

(C3H10N+ • Water • Methylamine, N,N-dimethyl-) + Water = (C3H10N+ • 2Water • Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • H2O • C3H9N) + H2O = (C3H10N+ • 2H2O • C3H9N)

Quantity Value Units Method Reference Comment
Δr34.kJ/molPHPMSEl-Shall, Daly, et al., 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AEl-Shall, Daly, et al., 1992gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
10.225.PHPMSEl-Shall, Daly, et al., 1992gas phase; Entropy change calculated or estimated; M

Potassium ion (1+) + Methylamine, N,N-dimethyl- = (Potassium ion (1+) • Methylamine, N,N-dimethyl-)

By formula: K+ + C3H9N = (K+ • C3H9N)

Quantity Value Units Method Reference Comment
Δr83.7kJ/molHPMSDavidson and Kebarle, 1976gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M
Quantity Value Units Method Reference Comment
Δr97.9J/mol*KHPMSDavidson and Kebarle, 1976gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M
Quantity Value Units Method Reference Comment
Δr54.4kJ/molHPMSDavidson and Kebarle, 1976gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M

C3H8N- + Hydrogen cation = Methylamine, N,N-dimethyl-

By formula: C3H8N- + H+ = C3H9N

Quantity Value Units Method Reference Comment
Δr>1699.6 ± 2.5kJ/molG+TSMacKay and Bohme, 1978gas phase; Computations put dHacid ca. 412 kcal/mol; B
Quantity Value Units Method Reference Comment
Δr>1665.2kJ/molIMRBMacKay and Bohme, 1978gas phase; Computations put dHacid ca. 412 kcal/mol; B

(C3H10N+ • Methylamine, N,N-dimethyl-) + Methyl Alcohol = (C3H10N+ • Methyl Alcohol • Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • C3H9N) + CH4O = (C3H10N+ • CH4O • C3H9N)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr44.4kJ/molPHPMSEl-Shall, Daly, et al., 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSEl-Shall, Daly, et al., 1992gas phase; M

(C3H10N+ • 2Methylamine, N,N-dimethyl-) + Water = (C3H10N+ • Water • 2Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • 2C3H9N) + H2O = (C3H10N+ • H2O • 2C3H9N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr37.kJ/molPHPMSEl-Shall, Daly, et al., 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSEl-Shall, Daly, et al., 1992gas phase; M

(C3H10N+ • Methyl Alcohol • Methylamine, N,N-dimethyl-) + Methyl Alcohol = (C3H10N+ • 2Methyl Alcohol • Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • CH4O • C3H9N) + CH4O = (C3H10N+ • 2CH4O • C3H9N)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr40.kJ/molPHPMSEl-Shall, Daly, et al., 1992gas phase; M

(C3H10N+ • Methylamine, N,N-dimethyl- • Water) + Methylamine, N,N-dimethyl- = (C3H10N+ • 2Methylamine, N,N-dimethyl- • Water)

By formula: (C3H10N+ • C3H9N • H2O) + C3H9N = (C3H10N+ • 2C3H9N • H2O)

Quantity Value Units Method Reference Comment
Δr46.0kJ/molPHPMSEl-Shall, Daly, et al., 1992gas phase; M

(C3H10N+ • 2Methylamine, N,N-dimethyl-) + Methylamine, N,N-dimethyl- = (C3H10N+ • 3Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • 2C3H9N) + C3H9N = (C3H10N+ • 3C3H9N)

Quantity Value Units Method Reference Comment
Δr27.kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M

(C3H10N+ • 3Methylamine, N,N-dimethyl-) + Methylamine, N,N-dimethyl- = (C3H10N+ • 4Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • 3C3H9N) + C3H9N = (C3H10N+ • 4C3H9N)

Quantity Value Units Method Reference Comment
Δr35.kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M

(C3H10N+ • 4Methylamine, N,N-dimethyl-) + Methylamine, N,N-dimethyl- = (C3H10N+ • 5Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • 4C3H9N) + C3H9N = (C3H10N+ • 5C3H9N)

Quantity Value Units Method Reference Comment
Δr37.kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M

(C3H10N+ • 5Methylamine, N,N-dimethyl-) + Methylamine, N,N-dimethyl- = (C3H10N+ • 6Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • 5C3H9N) + C3H9N = (C3H10N+ • 6C3H9N)

Quantity Value Units Method Reference Comment
Δr31.kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M

Sodium ion (1+) + Methylamine, N,N-dimethyl- = (Sodium ion (1+) • Methylamine, N,N-dimethyl-)

By formula: Na+ + C3H9N = (Na+ • C3H9N)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
79.5298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

(C3H10N+ • Methylamine, N,N-dimethyl-) + Methylamine, N,N-dimethyl- = (C3H10N+ • 2Methylamine, N,N-dimethyl-)

By formula: (C3H10N+ • C3H9N) + C3H9N = (C3H10N+ • 2C3H9N)

Quantity Value Units Method Reference Comment
Δr29.kJ/molMKERWei, Tzeng, et al., 1991gas phase; from graph; M

2Ethylamine = Methylamine + Methylamine, N,N-dimethyl-

By formula: 2C2H7N = CH5N + C3H9N

Quantity Value Units Method Reference Comment
Δr-13.2kJ/molEqkIssoire and Long, 1960gas phase; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
9.5 MN/A

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Issoire and Long, 1960
Issoire, J.; Long, C., Etude de la thermodynamique chimique de la reaction de formation des methylamines, Bull. Soc. Chim. France, 1960, 2004-2012. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Lemoult, 1907
Lemoult, M.P., Recherches theoriques et experimentales sur les chaleurs de combustion et de formation des composes organiques, Ann. Chim. Phys., 1907, 12, 395-432. [all data]

Muller, 1910
Muller, J.-A., Sur les chaleurs de combustion et les poids specifiques des methylamines, Ann. Chim. Phys., 1910, 20, 116-130. [all data]

Aston, Sagenkahn, et al., 1944
Aston, J.G.; Sagenkahn, M.L.; Szasa, G.J.; Moessen, G.W.; Zuhr, H.F., The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of trimethylamine. The entropy from spectroscopic and molecular data, J. Am. Chem. Soc., 1944, 66, 1171-1177. [all data]

Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L., Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids, J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

El-Shall, Daly, et al., 1992
El-Shall, M.S.; Daly, G.M.; Gao, J.; Meot-Ner (Mautner), M.; Sieck, L.W., How Sensitive are Cluster Compositions to Energetics? A Joint Beam Expansion/ Thermochemical Study of Water - Methanol - Trimethylamine Clusters, J. Phys. Chem., 1992, 96, 2, 507, https://doi.org/10.1021/j100181a002 . [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Wei, Tzeng, et al., 1991
Wei, S.; Tzeng, W.B.; Castleman, A.W., Structure of protonated solvation complexes - ammonia trimethylamine cluster ions and their metastable decompositions, J. Phys. Chem., 1991, 95, 2, 585, https://doi.org/10.1021/j100155a019 . [all data]

Yamdagni and Kebarle, 1973
Yamdagni, R.; Kebarle, P., Gas - Phase Basicites of Amines. Hydrogen Bonding in Proton - Bound Amine Dimers and Proton - Induced Cyclization of alpha, omega - Diamines, J. Am. Chem. Soc., 1973, 95, 11, 3504, https://doi.org/10.1021/ja00792a010 . [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P., Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M, J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011 . [all data]

Davidson and Kebarle, 1976, 2
Davidson, W.R.; Kebarle, P., Ionic Solvation by Aprotic Solvents. Gas Phase Solvation of the Alkali Ions by Acetonitrile, J. Am. Chem. Soc., 1976, 98, 20, 6125, https://doi.org/10.1021/ja00436a010 . [all data]

MacKay and Bohme, 1978
MacKay, G.I.; Bohme, D.K., Proton-Transfer Reactions in Nitromethane at 297K, Int. J. Mass Spectrom. Ion Phys., 1978, 26, 4, 327, https://doi.org/10.1016/0020-7381(78)80052-7 . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References