2-Propanamine
- Formula: C3H9N
- Molecular weight: 59.1103
- IUPAC Standard InChIKey: JJWLVOIRVHMVIS-UHFFFAOYSA-N
- CAS Registry Number: 75-31-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Isopropylamine; sec-Propylamine; Monoisopropylamine; 1-Methylethylamine; 2-Aminopropane; 2-Propylamine; iso-C3H7NH2; Isopropilamina; Propane, 2-amino-; 2-Amino-propaan; 2-Amino-propano; 2-Aminopropan; UN 1221; iso-Propylamine gas; NSC 62775
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -83.7 ± 0.8 | kJ/mol | Cm | Scott, 1971 | |
ΔfH°gas | -83.76 ± 0.79 | kJ/mol | Ccr | Smith and Good, 1967 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
(C3H210N+ • 2) + = (C3H210N+ • 3)
By formula: (C3H210N+ • 2C3H9N) + C3H9N = (C3H210N+ • 3C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 67.8 | kJ/mol | HPMS | Zielinska and Wincel, 1974 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 164. | J/mol*K | HPMS | Zielinska and Wincel, 1974 | gas phase; Entropy change is questionable; M |
(C3H210N+ • ) + = (C3H210N+ • 2)
By formula: (C3H210N+ • C3H9N) + C3H9N = (C3H210N+ • 2C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 82.8 | kJ/mol | HPMS | Zielinska and Wincel, 1974 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 178. | J/mol*K | HPMS | Zielinska and Wincel, 1974 | gas phase; Entropy change is questionable; M |
C3H8N- + =
By formula: C3H8N- + H+ = C3H9N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1662. ± 13. | kJ/mol | G+TS | Brauman and Blair, 1971 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1631. ± 13. | kJ/mol | IMRB | Brauman and Blair, 1971 | gas phase; B |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas Chromatography, References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | OV-101 | 130. | 469. | Osmialowski, Halkiewicz, et al., 1985 | Ar, Chromosorb W HP; Column length: 1. m |
Packed | SE-30 | 180. | 468. | Oszczapowicz, Osek, et al., 1984 | N2, Chromosorb W AW; Column length: 3. m |
Packed | Apiezon L | 100. | 477. | Zhuravleva, Kapustin, et al., 1976 | N2 or He, Chromosorb G, AW; Column length: 2.7 m |
Kovats' RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | PEG-2000 | 120. | 743. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 150. | 740. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 152. | 725. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 179. | 710. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Packed | PEG-2000 | 180. | 740. | Anderson, Jurel, et al., 1973 | He, Celite 545 (44-60 mesh); Column length: 3. m |
Normal alkane RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | OV-101 | 130. | 469. | Qi, Yang, et al., 2000 |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | OV-101 | 465. | Zenkevich, 2005 | 25. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Polydimethyl siloxanes | 465. | Zenkevich and Chupalov, 1996 | Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Scott, 1971
Scott, D.W.,
1-Aminopropane, 2-aminopropane, and 2-methyl-2-aminopropane. Vibrational assignments, conformational analyses, and chemical thermodynamic properties,
J. Chem. Thermodyn., 1971, 3, 843-852. [all data]
Smith and Good, 1967
Smith, N.K.; Good, W.D.,
Enthalpies of combustion and formation of propylamine, isopropylamine, and tert-butylamine,
J. Chem. Eng. Data, 1967, 12, 572-574. [all data]
Zielinska and Wincel, 1974
Zielinska, T.J.; Wincel, H.,
Gas - Phase Solvation of Protonated Aliphatic Amines: Methyl, Ethyl, n - Propyl, and Iso - Propylamine,
Chem. Phys. Lett., 1974, 25, 354. [all data]
Brauman and Blair, 1971
Brauman, J.I.; Blair, L.K.,
Gas phase acidities of amines,
J. Am. Chem. Soc., 1971, 93, 3911. [all data]
Osmialowski, Halkiewicz, et al., 1985
Osmialowski, K.; Halkiewicz, J.; Radecki, A.; Kaliszan, R.,
Quantum chemical parameters in correlation analysis of gas-liquid chromatographic retention indices of amines,
J. Chromatogr., 1985, 346, 53-60, https://doi.org/10.1016/S0021-9673(00)90493-X
. [all data]
Oszczapowicz, Osek, et al., 1984
Oszczapowicz, J.; Osek, J.; Dolecka, E.,
Retention indices of dimethylformamidines, dimethylacetamidines and tetramethylguanidines on a non-polar column,
J. Chromatogr., 1984, 315, 95-100, https://doi.org/10.1016/S0021-9673(01)90727-7
. [all data]
Zhuravleva, Kapustin, et al., 1976
Zhuravleva, I.L.; Kapustin, Yu.P.; Golovnya, P.B.,
Retention indices of some isoaliphatic and heterocyclic nitrogenous bases,
Zh. Anal. Khim., 1976, 31, 1378-1380. [all data]
Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L.,
Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases,
Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]
Qi, Yang, et al., 2000
Qi, Y.; Yang, J.; Xu, L.,
correlation analysis of the structures and gas liquid chromatographic retention indices of amines,
Chin. J. Anal. Chem., 2000, 28, 2, 223-227. [all data]
Zenkevich, 2005
Zenkevich, I.G.,
Experimentally measured retention indices., 2005. [all data]
Zenkevich and Chupalov, 1996
Zenkevich, I.G.; Chupalov, A.A.,
New Possibilities of Chromato Mass Pectrometric Identification of Organic Compounds Using Increments of Gas Chromatographic Retention Indices of Molecular Structural Fragments,
Zh. Org. Khim. (Rus.), 1996, 32, 5, 656-666. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References
- Symbols used in this document:
ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.