Propane, 2-iodo-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Lithium ion (1+) + Propane, 2-iodo- = (Lithium ion (1+) • Propane, 2-iodo-)

By formula: Li+ + C3H7I = (Li+ • C3H7I)

Quantity Value Units Method Reference Comment
Δr123.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Propane, 1-iodo- = Propane, 2-iodo-

By formula: C3H7I = C3H7I

Quantity Value Units Method Reference Comment
Δr-8.62kJ/molEqkFuruyama, Golden, et al., 1969gas phase; ALS
Δr-12. ± 4.2kJ/molCisoAndreevskii and Rozhnov, 1962gas phase; ALS

2Propane, 2-iodo- + Mercury diiodide = C6H14Hg + 2Iodine

By formula: 2C3H7I + HgI2 = C6H14Hg + 2I2

Quantity Value Units Method Reference Comment
Δr242.3 ± 1.9kJ/molCmMortimer, Pritchard, et al., 1952liquid phase; ALS

Hydrogen iodide + Propene = Propane, 2-iodo-

By formula: HI + C3H6 = C3H7I

Quantity Value Units Method Reference Comment
Δr-86.27kJ/molEqkFuruyama, Golden, et al., 1969gas phase; ALS

Henry's Law data

Go To: Top, Reaction thermochemistry data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.11 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species. Value at T = 293. K.
0.089 VN/A 

Gas Chromatography

Go To: Top, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1661.Helmig and Greenberg, 199560. m/0.33 mm/0.25 μm, 6. K/min; Tstart: -50. C; Tend: 180. C

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryApiezon L130.670.Arruda, Junkes, et al., 2008 

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1654.Helmig and Greenberg, 199560. m/0.33 mm/0.25 μm; Program: not specified

References

Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Furuyama, Golden, et al., 1969
Furuyama, S.; Golden, D.M.; Benson, S.W., Thermochemistry of the gas phase equilibria i-C3H7I = C3H6 + HI, n-C3H7I = i-C3H7I, and C3H6 + 2HI = C3H8 + I2, J. Chem. Thermodyn., 1969, 1, 363-375. [all data]

Andreevskii and Rozhnov, 1962
Andreevskii, D.N.; Rozhnov, A.M., The thermodynamics of alkyl halides. The isomerization of propl iodide, Neftekhimiya, 1962, 2, 378-383. [all data]

Mortimer, Pritchard, et al., 1952
Mortimer, C.T.; Pritchard, H.O.; Skinner, H.A., Thermochemistry of metallic alkyls. Part V - Mercury di-propyl and mercury di-isopropyl, Trans. Faraday Soc., 1952, 48, 220-229. [all data]

Helmig and Greenberg, 1995
Helmig, D.; Greenberg, J., Artifact formation from the use of potassium-iodide-based ozone traps during atmospheric sampling of trace organic gases, J. Hi. Res. Chromatogr., 1995, 18, 1, 15-18, https://doi.org/10.1002/jhrc.1240180105 . [all data]

Arruda, Junkes, et al., 2008
Arruda, A.C.S.; Junkes, B. da.S.; Souza, E.S.; Yunes, R.A.; Heizen, V.E.F., Semi-Emlirical Topological Index to Predict Properties of Halogenated Aliphatic Compounds, J. Chemometrics, 2008, 22, 3-4, 186-194, https://doi.org/10.1002/cem.1121 . [all data]


Notes

Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, References