Isobutane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-32.07 ± 0.15kcal/molCcbPittam and Pilcher, 1972ALS
Δfgas-32.42 ± 0.13kcal/molCmProsen, Maron, et al., 1951see Prosen and Rossini, 1945, Rossini, 1935; ALS
Quantity Value Units Method Reference Comment
Δcgas-685.71 ± 0.14kcal/molCcbPittam and Pilcher, 1972Corresponding Δfgas = -32.07 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-685.37 ± 0.11kcal/molCmProsen, Maron, et al., 1951see Prosen and Rossini, 1945, Rossini, 1935; Corresponding Δfgas = -32.41 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
8.32050.Chen S.S., 1975Recommended values are in good agreement with those calculated by [ Pitzer K.S., 1946].; GT
11.30100.
14.41150.
17.17200.
21.49273.15
23.10298.15
23.22300.
29.739400.
35.669500.
40.719600.
45.000700.
48.671800.
51.850900.
54.6011000.
57.0001100.
59.0701200.
60.8801300.
62.4501400.
63.8191500.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
19.67 ± 0.01243.15Ernst G., 1970Other experimental values of heat capacity [ Sage B.H., 1937, Sage B.H., 1938] are less accurate, see [ Chen S.S., 1975]. Please also see Dailey B.P., 1943, Wacker P.F., 1947.; GT
21.50 ± 0.01273.15
22.76 ± 0.024293.15
24.061 ± 0.024313.15
25.423 ± 0.026333.15
26.209347.6
26.707 ± 0.026353.15
26.900359.4
28.590387.5
32.751452.5
36.551520.9
38.549561.7
40.559605.3
44.259692.7

Phase change data

Go To: Top, Gas phase thermochemistry data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Tboil262. ± 2.KAVGN/AAverage of 24 out of 25 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus140. ± 100.KAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple113.55KN/AYounglove and Ely, 1987Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple113.55KN/AGoodwin and Haynes, 1982Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple113.74KN/AAston, Kennedy, et al., 1940Uncertainty assigned by TRC = 0.07 K; TRC
Ttriple113.2KN/AParks, Shomate, et al., 1937Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Ptriple1.9226×10-7atmN/AYounglove and Ely, 1987Uncertainty assigned by TRC = 2.×10-10 atm; TRC
Ptriple1.9226×10-7atmN/AGoodwin and Haynes, 1982Uncertainty assigned by TRC = 5.×10-10 atm; TRC
Quantity Value Units Method Reference Comment
Tc407.7 ± 0.8KAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Pc36.0 ± 0.5atmAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.259l/molN/ADaubert, 1996 
Vc0.2591l/molN/AYounglove and Ely, 1987Uncertainty assigned by TRC = 0.001 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc3.85 ± 0.05mol/lN/ADaubert, 1996 
ρc3.880mol/lN/ALevelt Sengers, Kamgar-Parsi, et al., 1983Uncertainty assigned by TRC = 0.009 mol/l; TRC
ρc3.91mol/lN/AWaxman and Gallagher, 1983Uncertainty assigned by TRC = 0.09 mol/l; TRC
ρc3.8601mol/lN/AGoodwin and Haynes, 1982Uncertainty assigned by TRC = 0.03 mol/l; TRC
ρc3.802mol/lN/ABeattie, Edwards, et al., 1949Uncertainty assigned by TRC = 0.1 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap4.778kcal/molN/AMajer and Svoboda, 1985 

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
5.0901261.44N/AAston, Kennedy, et al., 1940, 2P = 101.325 kPa; DH
5.09261.3N/AMajer and Svoboda, 1985 
5.14318.N/ALim, Park, et al., 1999Based on data from 303. to 333. K.; AC
5.35265.AStephenson and Malanowski, 1987Based on data from 186. to 280. K.; AC
6.43172.AStephenson and Malanowski, 1987Based on data from 121. to 187. K.; AC
5.23278.AStephenson and Malanowski, 1987Based on data from 263. to 306. K.; AC
5.11316.AStephenson and Malanowski, 1987Based on data from 301. to 366. K.; AC
5.16376.AStephenson and Malanowski, 1987Based on data from 361. to 408. K.; AC
5.16292.N/ASteele, Poling, et al., 1976Based on data from 277. to 344. K. See also Boublik, Fried, et al., 1984.; AC
5.09286.N/AReid, 1972AC
5.1 ± 0.8261.44VAston, Kennedy, et al., 1940, 3ALS
5.40247.N/AAston, Kennedy, et al., 1940, 2Based on data from 188. to 262. K. See also Boublik, Fried, et al., 1984.; AC

Entropy of vaporization

ΔvapS (cal/mol*K) Temperature (K) Reference Comment
19.47261.44Aston, Kennedy, et al., 1940, 2P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
261.31 to 408.124.32241132.1080.918Das, Reed, et al., 1973Coefficents calculated by NIST from author's data.
188.06 to 261.543.93846912.141-29.808Aston, Kennedy, et al., 1940, 2Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
1.085113.74Aston, Kennedy, et al., 1940, 2DH
1.07113.7Perkins and Magee, 2009AC
1.09113.7Domalski and Hearing, 1996AC
1.075113.2Parks, Shomate, et al., 1937, 2DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
9.541113.74Aston, Kennedy, et al., 1940, 2DH
9.496113.2Parks, Shomate, et al., 1937, 2DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 121

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryCP Sil 260.361.1Estel, Mohnke, et al., 1995100. m/0.25 mm/0.25 μm
CapillaryCP Sil 5 CB20.366.Do and Raulin, 199225. m/0.15 mm/2. μm, H2
CapillarySqualane50.366.7Lunskii and Paizanskaya, 1988He; Column length: 50. m; Column diameter: 0.22 mm
CapillarySqualane70.367.4Lunskii and Paizanskaya, 1988He; Column length: 50. m; Column diameter: 0.22 mm
CapillarySE-3060.365.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
CapillaryOV-120.365.Nijs and Jacobs, 1981He; Column length: 150. m; Column diameter: 0.50 mm
CapillarySqualane50.364.6Schröder, 1980 
CapillarySqualane100.366.Lulova, Leont'eva, et al., 1976He; Column length: 120. m; Column diameter: 0.25 mm
CapillarySqualane40.371.Matukuma, 1969N2; Column length: 91.4 m; Column diameter: 0.25 mm
PackedSqualane27.365.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.366.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.366.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.366.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSE-3070.369.Widmer, 1967Diatoport S; Column length: 7.9 m
PackedSqualane26.363.Zulaïca and Guiochon, 1966Column length: 10. m

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH-100366.Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)
CapillaryDB-1362.Hoekman, 199360. m/0.32 mm/1.0 μm, He; Program: -40 C for 12 min; -40 - 125 C at 3 deg.min; 125-185 C at 6 deg/min; 185 - 220 C at 20 deg/min; hold 220 C for 2 min

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedCarbowax 20M130.369.Widmer, 1967Diatoport P; Column length: 7.9 m
PackedCarbowax 20M70.372.Widmer, 1967Diatoport P; Column length: 7.9 m

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-101354.2Yin, Liu, et al., 2001N2, 1. K/min; Column length: 80. m; Column diameter: 0.22 mm; Tstart: 30. C; Tend: 130. C
CapillaryPetrocol DH353.99Subramaniam, Bochniak, et al., 1994100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH353.53White, Douglas, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH353.53White, Douglas, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH353.White, Hackett, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-101354.Wu and Lu, 1984Program: not specified

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryMethyl Silicone50.366.N/AN2; Column length: 74.6 m; Column diameter: 0.28 mm
PackedMethyl Silicone50.364.Huguet, 1961Nitrogen, Celite C-22; Column length: 2.5 m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPolydimethyl siloxane: CP-Sil 5 CB359.Bramston-Cook, 201360. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min
CapillaryPetrocol DH354.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillaryPONA354.Zhang, Ding, et al., 200950. m/0.20 mm/0.50 μm, Nitrogen, 35. C @ 15. min, 2. K/min, 200. C @ 10. min
CapillaryOV-1354.8Krkosova, Kubinec, et al., 2007100. m/0.32 mm/0.25 μm, Helium, 5. K/min, 310. C @ 5. min; Tstart: 30. C
CapillaryBP-1364.Health Safety Executive, 200050. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C
CapillaryDB-1355.Ciccioli, Cecinato, et al., 199260. m/0.32 mm/1.2 μm, He, 30. C @ 10. min, 3. K/min; Tend: 240. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone366.Chen and Feng, 2007Program: not specified
CapillaryMethyl Silicone362.Blunden, Aneja, et al., 200560. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min)
CapillaryOV-101366.Du and Liang, 2003Program: not specified
CapillaryPONA368.Perkin Elmer Instruments, 2002Column length: 100. m; Phase thickness: 0.50 μm; Program: not specified
CapillaryPolydimethyl siloxanes354.Yin, Guo, et al., 2001Program: not specified
CapillaryMethyl Silicone354.Spieksma, 1999Program: not specified
CapillarySPB-1354.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryPolydimethyl siloxanes366.Zenkevich and Chupalov, 1996Program: not specified
CapillaryPolydimethyl siloxanes366.Zenkevich and Chupalov, 1996Program: not specified
CapillarySPB-1354.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1370.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryOV-1370.Ramsey and Flanagan, 1982Program: not specified
PackedApieson L350.Kojima, Fujii, et al., 1980Chromosorb W; Column length: 20. m; Program: not specified
PackedSE-30368.Robinson and Odell, 1971N2, Chromosorb W; Column length: 6.1 m; Program: 50C910min) => 20C/min => 90(6min) => 10C/min => 150C(hold)

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Pittam and Pilcher, 1972
Pittam, D.A.; Pilcher, G., Measurements of heats of combustion by flame calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane, J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229. [all data]

Prosen, Maron, et al., 1951
Prosen, E.J.; Maron, F.W.; Rossini, F.D., Heats of combustion, formation, and insomerization of ten C4 hydrocarbons, J. Res. NBS, 1951, 46, 106-112. [all data]

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of formation and combustion of 1,3-butadiene and styrene, J. Res. NBS, 1945, 34, 59-63. [all data]

Rossini, 1935
Rossini, F.D., Heat of combustion of isobutane, J. Res. NBS, 1935, 15, 357-361. [all data]

Chen S.S., 1975
Chen S.S., Ideal gas thermodynamic properties and isomerization of n-butane and isobutane, J. Phys. Chem. Ref. Data, 1975, 4, 859-869. [all data]

Pitzer K.S., 1946
Pitzer K.S., The entropies and related properties of branched paraffin hydrocarbons, Chem. Rev., 1946, 39, 435-447. [all data]

Ernst G., 1970
Ernst G., Ideal and real gas state heat capacities Cp of C3H8, i-C4H10, C2F5Cl, CH2ClCF3, CF2ClCFCl2, and CHF2Cl, J. Chem. Thermodyn., 1970, 2, 787-791. [all data]

Sage B.H., 1937
Sage B.H., Phase equilibria in hydrocarbon systems. XX. Isobaric heat capacity of gaseous propane, n-butane, isobutane, and n-pentane, Ind. Eng. Chem., 1937, 29, 1309-1314. [all data]

Sage B.H., 1938
Sage B.H., Phase equilibrium in hydrocarbon systems. Thermodynamic properties of isobutane, Ind. Eng. Chem., 1938, 30, 673-681. [all data]

Dailey B.P., 1943
Dailey B.P., Heat capacities and hindered rotation in n-butane and isobutane, J. Am. Chem. Soc., 1943, 65, 44-46. [all data]

Wacker P.F., 1947
Wacker P.F., Heat capacities of gaseous oxygen, isobutane, and 1-butene from -30 to +90 C, J. Res. Nat. Bur. Stand., 1947, 38, 651-659. [all data]

Younglove and Ely, 1987
Younglove, B.A.; Ely, J.F., Thermophysical Properties of Fluids II. Methane, Ethane, Propane, Isobutane, and Normal Butane, J. Phys. Chem. Ref. Data, 1987, 16, 577. [all data]

Goodwin and Haynes, 1982
Goodwin, R.D.; Haynes, W.M., Thermophysical Properties of Propane from 85 to 700 K at Pressures to 70 MPa, NBS Monogr. (U. S.) No. 170, 249 pp., 1982. [all data]

Aston, Kennedy, et al., 1940
Aston, J.G.; Kennedy, R.M.; Schumann, S.C., The Heat Capacity and Entropy of Fusion and Vaporization and the Vapor Pressure of Isobutane, J. Am. Chem. Soc., 1940, 62, 2059. [all data]

Parks, Shomate, et al., 1937
Parks, G.S.; Shomate, C.H.; Kennedy, W.D.; Crawford, B.L., The entropies of n-butane and isobutane with some heat capacity data for isobutane, J. Chem. Phys., 1937, 5, 359-63. [all data]

Daubert, 1996
Daubert, T.E., Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes, J. Chem. Eng. Data, 1996, 41, 365-372. [all data]

Levelt Sengers, Kamgar-Parsi, et al., 1983
Levelt Sengers, J.M.H.; Kamgar-Parsi, B.; Sengers, J.V., Thermodnamic Properties of Isobutane in the Critical Region, J. Chem. Eng. Data, 1983, 28, 354-362. [all data]

Waxman and Gallagher, 1983
Waxman, M.; Gallagher, J.S., Thermodynamic Properties of Isobutane for Temperatures from 250 to 600 K and Pressures from 0.1 to 40 MPa, J. Chem. Eng. Data, 1983, 28, 224. [all data]

Beattie, Edwards, et al., 1949
Beattie, J.A.; Edwards, D.G.; Marple, S., The Vapor Pressure, Orthobaric Liquid Density, and Critical Constants of Isobutane, J. Chem. Phys., 1949, 17, 576. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Aston, Kennedy, et al., 1940, 2
Aston, J.G.; Kennedy, R.M.; Schumann, S.C., The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of isobutane, J. Am. Chem. Soc., 1940, 62, 2059-2063. [all data]

Lim, Park, et al., 1999
Lim, Jong Sung; Park, Ji-Young; Lee, Byung-Gwon; Lee, Youn-Woo; Kim, Jae-Duck, Phase Equilibria of CFC Alternative Refrigerant Mixtures: Binary Systems of Isobutane + 1,1,1,2-Tetrafluoroethane, + 1,1-Difluoroethane, and + Difluoromethane, J. Chem. Eng. Data, 1999, 44, 6, 1226-1230, https://doi.org/10.1021/je9900777 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Steele, Poling, et al., 1976
Steele, Kevin; Poling, Bruce E.; Manley, David B., Vapor pressures for the system 1-butene, isobutane, and 1,3-butadiene, J. Chem. Eng. Data, 1976, 21, 4, 399-403, https://doi.org/10.1021/je60071a006 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Aston, Kennedy, et al., 1940, 3
Aston, J.G.; Kennedy, R.M.; Schumann, S.C., The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of isobutane, J. Am. Chem. Soc., 1940, 62, 2059-20. [all data]

Das, Reed, et al., 1973
Das, T.R.; Reed, C.O., Jr.; Eubank, P.T., PVT Surface and Thermodynamic Properties of Isobutane, J. Chem. Eng. Data, 1973, 18, 3, 253-262, https://doi.org/10.1021/je60058a001 . [all data]

Perkins and Magee, 2009
Perkins, Richard A.; Magee, Joseph W., Molar Heat Capacity at Constant Volume for Isobutane at Temperatures from (114 to 345) K and at Pressures to 35 MPa «8224» «8225», J. Chem. Eng. Data, 2009, 54, 9, 2646-2655, https://doi.org/10.1021/je9001575 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Parks, Shomate, et al., 1937, 2
Parks, G.S.; Shomate, C.H.; Kennedy, W.D.; Crawford, B.L., Jr., The entropies of n-butane and isobutane, with some heat capacity data for isobutane, J. Chem. Phys., 1937, 5, 359-363. [all data]

Estel, Mohnke, et al., 1995
Estel, D.; Mohnke; Biermans; Rotzsche, The analysis of C4-C11 hydrocarbons in naphtha and reformate with a new apolar fused silica column, J. Hi. Res. Chromatogr., 1995, 18, 7, 403-412, https://doi.org/10.1002/jhrc.1240180703 . [all data]

Do and Raulin, 1992
Do, L.; Raulin, F., Gas chromatography of Titan's atmosphere. III. Analysis of low-molecular-weight hydrocarbons and nitriles with a CP-Sil-5 CB WCOT capillary column, J. Chromatogr., 1992, 591, 1-2, 297-301, https://doi.org/10.1016/0021-9673(92)80247-R . [all data]

Lunskii and Paizanskaya, 1988
Lunskii, M.Kh.; Paizanskaya, I.L., Identification of hydrocarbons C1-C9 of petrol fractions of oils and condensates in the use of capillary columns with dinonylphthalate, Zh. Anal. Khim., 1988, 43, 127-135. [all data]

Bredael, 1982
Bredael, P., Retention indices of hydrocarbons on SE-30, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1982, 5, 6, 325-328, https://doi.org/10.1002/jhrc.1240050610 . [all data]

Nijs and Jacobs, 1981
Nijs, H.H.; Jacobs, P.A., On-Line Single Run Analysis of Effluents from a Fischer-Tropsch Reactor, J. Chromatogr. Sci., 1981, 19, 1, 40-45, https://doi.org/10.1093/chromsci/19.1.40 . [all data]

Schröder, 1980
Schröder, I.H., Retention Indices of Hydrocarbons up to C14 for the Stationary Phase Squalane, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1980, 3, 1, 38-44, https://doi.org/10.1002/jhrc.1240030115 . [all data]

Lulova, Leont'eva, et al., 1976
Lulova, N.I.; Leont'eva, S.A.; Timofeeva, A.N., Gas-chromatographic method of determination of individual hydrocarbons in catalytic cracking gasolines in Proceedings of All-Union Research Institute on Oil Processes. Vol.18, All-Union Research Institute on Oil Processes, Moscow, 1976, 30-53. [all data]

Matukuma, 1969
Matukuma, A., Retention indices of alkanes through C10 and alkenes through C8 and relation between boiling points and retention data, Gas Chromatogr., Int. Symp. Anal. Instrum. Div Instrum Soc. Amer., 1969, 7, 55-75. [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]

Widmer, 1967
Widmer, H., Gas chromatographic identification of hydrocarbons using retention indices, J. Gas Chromatogr., 1967, 5, 10, 506-510, https://doi.org/10.1093/chromsci/5.10.506 . [all data]

Zulaïca and Guiochon, 1966
Zulaïca, J.; Guiochon, G., Analyse des hauts polymères par chromatographie en phase gazeuse de leurs produits de pyrolyse. II. Application à quelques hydrocarbures macromoléculaires purs, Bull. Soc. Chim. Fr., 1966, 4, 1351-1363. [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Hoekman, 1993
Hoekman, S.K., Improved gas chromatography procedure for speciated hydrocarbon measurements of vehicle emissions, J. Chromatogr., 1993, 639, 2, 239-253, https://doi.org/10.1016/0021-9673(93)80260-F . [all data]

Yin, Liu, et al., 2001
Yin, C.; Liu, W.; Li, Z.; Pan, Z.; Lin, T.; Zhang, M., Chemometrics to chemical modeling: structural coding in hydrocarbons and retention indices of gas chromatography, J. Sep. Sci., 2001, 24, 3, 213-220, https://doi.org/10.1002/1615-9314(20010301)24:3<213::AID-JSSC213>3.0.CO;2-4 . [all data]

Subramaniam, Bochniak, et al., 1994
Subramaniam, B.; Bochniak, D.; Snavely, K., Fischer-Tropsch synthesis in supercritical reaction media, Lawrence Department of Chemical and Petroleum Engineering (DOE/PC/92532--T7), United States Department of Energy, Pittsburgh, PA, 1994, 8, retrieved from http://www.NTIS.gov. [all data]

White, Douglas, et al., 1992
White, C.M.; Douglas, L.J.; Hackett, J.P.; Anderson, R.R., Characterization of synthetic gasoline from the chloromethane-zeolite reaction, Energy Fuels, 1992, 6, 1, 76-82, https://doi.org/10.1021/ef00031a012 . [all data]

White, Hackett, et al., 1992
White, C.M.; Hackett, J.; Anderson, R.R.; Kail, S.; Spock, P.S., Linear temperature programmed retention indices of gasoline range hydrocarbons and chlorinated hydrocarbons on cross-linked polydimethylsiloxane, J. Hi. Res. Chromatogr., 1992, 15, 2, 105-120, https://doi.org/10.1002/jhrc.1240150211 . [all data]

Wu and Lu, 1984
Wu, J.; Lu, W., Hydrocarbon analysis by open-tubular column chromatography with programmed temperature for straight run gasoline, Anal. Chem., 1984, 12, 7, 572-578. [all data]

Huguet, 1961
Huguet, M., Kovats retention indices in the qualitative analysis of light hydrocarbons by gas chromatography, Journees internationales d'etude des methodes de separation immediate et de chromatographie, 1961, 69. [all data]

Bramston-Cook, 2013
Bramston-Cook, R., Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Zhang, Ding, et al., 2009
Zhang, X.; Ding, L.; Sun, Z.; Song, L.; Sun, T., Study on quantitative structure-retention relationships for hydrocarbons in FCC gasoline, Chromatographia, 2009, 70, 3/4, 511-518, https://doi.org/10.1365/s10337-009-1174-0 . [all data]

Krkosova, Kubinec, et al., 2007
Krkosova, Z.; Kubinec, R.; Addova, G.; Jurdakova, H.; Blasko, J.; Ostrovsky, I.; Sojak, L., Gas chromatographic - mass spectrometric characterization of monomethylalkanes from fuel diesel, Petroleum Coal, 2007, 49, 3, 51-62. [all data]

Health Safety Executive, 2000
Health Safety Executive, MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]

Ciccioli, Cecinato, et al., 1992
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Frattoni, M.; Liberti, A., Use of carbon adsorption traps combined with high resolution gas chromatography - mass spectrometry for the analysis of polar and non-polar C4-C14 hydrocarbons involved in photochemical smog formation, J. Hi. Res. Chromatogr., 1992, 15, 2, 75-84, https://doi.org/10.1002/jhrc.1240150205 . [all data]

Chen and Feng, 2007
Chen, Y.; Feng, C., QSPR study on gas chromatography retention index of some organic pollutants, Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]

Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A., Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina, Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053 . [all data]

Du and Liang, 2003
Du, Y.; Liang, Y., Data mining for seeking accurate quantitative relationship between molecular structure and GC retention indices of alkanes by projection pursuit, Comput. Biol. Chem., 2003, 27, 3, 339-353, https://doi.org/10.1016/S1476-9271(02)00081-6 . [all data]

Perkin Elmer Instruments, 2002
Perkin Elmer Instruments, Detailed hydrocarbon analysis (DHAX) Model 4015, 2002, retrieved from http://www.perkinelmer.com/instruments. [all data]

Yin, Guo, et al., 2001
Yin, C.; Guo, W.; Lin, T.; Liu, S.; Fu, R.; Pan, Z.; Wang, L., Application of wavelet neural network to the prediction of gas chromatographic retention indices of alkanes, J. Chinese Chem. Soc., 2001, 48, 739-749. [all data]

Spieksma, 1999
Spieksma, W., Determination of vapor liquid equilibrium from the Kovats retention index on dimethylsilicone using the Wilson mixing tool, J. Hi. Res. Chromatogr., 1999, 22, 10, 565-588, https://doi.org/10.1002/(SICI)1521-4168(19991001)22:10<565::AID-JHRC565>3.0.CO;2-2 . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Zenkevich and Chupalov, 1996
Zenkevich, I.G.; Chupalov, A.A., New Possibilities of Chromato Mass Pectrometric Identification of Organic Compounds Using Increments of Gas Chromatographic Retention Indices of Molecular Structural Fragments, Zh. Org. Khim. (Rus.), 1996, 32, 5, 656-666. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Kojima, Fujii, et al., 1980
Kojima, T.; Fujii, T.; Hosaka, Y., Thermal decomposition products of sterepisomeric polypropylenes, Mass Spectrometry, 1980, 28, 4, 335-341. [all data]

Robinson and Odell, 1971
Robinson, P.G.; Odell, A.L., A system of standard retention indices and its uses. The characterisation of stationary phases and the prediction of retention indices, J. Chromatogr., 1971, 57, 1-10, https://doi.org/10.1016/0021-9673(71)80001-8 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, References