Dimethyl sulfide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, IR Spectrum, UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfliquid-15.6 ± 0.36kcal/molCcbVoronkov, Klyuchnikov, et al., 1989 
Δfliquid-15.64 ± 0.14kcal/molCcrMcCullough, Hubbard, et al., 1957 
Δfliquid-14.4kcal/molCmDouglas, 1946At 291°K
Quantity Value Units Method Reference Comment
Δcliquid-521.38 ± 0.08kcal/molCcrMcCullough, Hubbard, et al., 1957Reanalyzed by Cox and Pilcher, 1970, Original value = -521.09 ± 0.08 kcal/mol

Phase change data

Go To: Top, Condensed phase thermochemistry data, IR Spectrum, UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Tboil311. ± 3.KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus174.88KN/AHaines, Helm, et al., 1956Uncertainty assigned by TRC = 0.06 K; TRC
Tfus174.90KN/AMcallan, Cullum, et al., 1951Uncertainty assigned by TRC = 0.1 K; TRC
Quantity Value Units Method Reference Comment
Ttriple174.85KN/AOsborne, Doescher, et al., 1942Uncertainty assigned by TRC = 0.03 K; TRC
Quantity Value Units Method Reference Comment
Tc503.KN/AMajer and Svoboda, 1985 
Tc503.0KN/ABerthoud and Brum, 1924Uncertainty assigned by TRC = 0.4 K; by disappearance of meniscus; TRC
Tc503.0KN/ABerthoud and Brum, 1924Uncertainty assigned by TRC = 0.4 K; by apperanance of turbidity; TRC
Quantity Value Units Method Reference Comment
Pc54.58atmN/ABerthoud and Brum, 1924Uncertainty assigned by TRC = 0.4000 atm; vapor pressure at Tc; TRC
Quantity Value Units Method Reference Comment
ρc4.972mol/lN/ABerthoud and Brum, 1924Uncertainty assigned by TRC = 0.03 mol/l; TRC
ρc4.84mol/lN/AHerz and Neukirch, 1923Uncertainty assigned by TRC = 0.03 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap6.65 ± 0.07kcal/molAVGN/AAverage of 8 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
6.5310.5N/AMajer and Svoboda, 1985 
6.91283.AStephenson and Malanowski, 1987Based on data from 268. to 319. K.; AC
6.62322.AStephenson and Malanowski, 1987Based on data from 307. to 379. K.; AC
6.36387.AStephenson and Malanowski, 1987Based on data from 372. to 453. K.; AC
6.38462.AStephenson and Malanowski, 1987Based on data from 447. to 503. K.; AC
6.88 ± 0.02276.CMcCullough, Hubbard, et al., 1957AC
6.67 ± 0.02292.CMcCullough, Hubbard, et al., 1957AC
6.45 ± 0.02310.CMcCullough, Hubbard, et al., 1957AC
6.74302.EBWhite, Barnard--Smith, et al., 1952Based on data from 287. to 318. K.; AC
6.91278.N/AOsborne, Doescher, et al., 1942, 2Based on data from 251. to 293. K.; AC
6.91310.N/AThompson and Linnett, 1935AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kcal/mol) β Tc (K) Reference Comment
276. to 311.9.9280.2731503.Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
250.60 to 293.244.281421201.134-29.906Osborne, Doescher, et al., 1942, 2Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
1.91174.9Domalski and Hearing, 1996AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


IR Spectrum

Go To: Top, Condensed phase thermochemistry data, Phase change data, UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Coblentz Society, Inc.

Condensed Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Except where noted, spectra from this collection were measured on dispersive instruments, often in carefully selected solvents, and hence may differ in detail from measurements on FTIR instruments or in other chemical environments. More information on the manner in which spectra in this collection were collected can be found here.

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View scan of original (hardcopy) spectrum.

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner COBLENTZ SOC.
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin WYANDOTTE CHEMICALS CORP.
Source reference COBLENTZ NO. 05969
Date Not specified, most likely prior to 1970
Name(s) dimethyl sulfide
(methylsulfanyl)methane
State LIQUID
Instrument BAIRD (GRATING)
Instrument parameters NaCl PRISM
Path length 0.005 CM
Resolution 2
Sampling procedure TRANSMISSION
Data processing DIGITIZED BY COBLENTZ SOCIETY (BATCH I) FROM HARD COPY
Boiling point 37-38 C

This IR spectrum is from the Coblentz Society's evaluated infrared reference spectra collection.


UV/Visible spectrum

Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Alexander N. Yermakov, Alexy A. Usov, Antonina A. Goncharova, Axlexander N. Leskin, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Fehnel and Carmack, 1949
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 10217
Instrument Beckman DU
Melting point 79
Boiling point 203

References

Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, UV/Visible spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Voronkov, Klyuchnikov, et al., 1989
Voronkov, M.G.; Klyuchnikov, V.A.; Kolabin, S.N.; Shvets, G.N.; Varusin, P.I.; Deryagina, E.N.; Korchevin, N.A.; Tsvetnitskaya, S.I., Thermochemical properties of diorganyl chalcogenides and dichalcogenides RMnR(M = S, Se, Te; n = 1, 2)., Dokl. Phys. Chem. (Engl. Transl.), 1989, 307, 650-653, In original 1139. [all data]

McCullough, Hubbard, et al., 1957
McCullough, J.P.; Hubbard, W.N.; Frow, F.R.; Hossenlopp, I.A.; Waddington, G., Ethanethiol and 2-thiapropane: Heats of formation and isomerization; the chemical thermodynamic properties from 0 to 1000°K, J. Am. Chem. Soc., 1957, 79, 561-566. [all data]

Douglas, 1946
Douglas, T.B., Heats of formation of liquid methyl sulfoxide and crystalline methyl sulfone at 18°, J. Am. Chem. Soc., 1946, 68, 1072-1076. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Haines, Helm, et al., 1956
Haines, W.E.; Helm, R.V.; Cook, G.L.; Ball, J.S., Purification and Properties of Organic Sulfur Compounds, J. Phys. Chem., 1956, 60, 549-55. [all data]

Mcallan, Cullum, et al., 1951
Mcallan, D.T.; Cullum, T.V.; Dean, R.A.; Fidler, F.A., The Preparation and Properties of Sulfur Compounds Related to Petroleum I. The Dialkyl Sulfides and Disulfides, J. Am. Chem. Soc., 1951, 73, 3627-32. [all data]

Osborne, Doescher, et al., 1942
Osborne, D.W.; Doescher, R.N.; Yost, D.M., The heat capacity, heats of fusion and vaporization, vapor pressure and entropy of dimethyl sulfide., J. Am. Chem. Soc., 1942, 64, 169-72. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Berthoud and Brum, 1924
Berthoud, A.; Brum, R., Physical Properties of Some Organic Compounds., J. Chim. Phys. Phys.-Chim. Biol., 1924, 21, 143-60. [all data]

Herz and Neukirch, 1923
Herz, W.; Neukirch, E., On Knowldge of the Critical State, Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1923, 104, 433-50. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

White, Barnard--Smith, et al., 1952
White, P.T.; Barnard--Smith, D.G.; Fidler, F.A., Vapor Pressure--Temperature Relationships of Sulfur Compounds Related to Petroleum, Ind. Eng. Chem., 1952, 44, 6, 1430-1438, https://doi.org/10.1021/ie50510a064 . [all data]

Osborne, Doescher, et al., 1942, 2
Osborne, D.W.; Doescher, R.N.; Yost, D.M., The heat capacity, heats of fusion and vaporization, vapor pressure and entropy of dimethyl sulfide, J. Am. Chem. Soc., 1942, 64, 169-172. [all data]

Thompson and Linnett, 1935
Thompson, H.W.; Linnett, J.W., The vapour pressures of some alkyl sulphides, Trans. Faraday Soc., 1935, 31, 1743, https://doi.org/10.1039/tf9353101743 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Fehnel and Carmack, 1949
Fehnel, E.A.; Carmack, M., J. Am. Chem. Soc., 1949, 71, 84. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, UV/Visible spectrum, References