Ethanethiol
- Formula: C2H6S
- Molecular weight: 62.134
- IUPAC Standard InChIKey: DNJIEGIFACGWOD-UHFFFAOYSA-N
- CAS Registry Number: 75-08-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Ethyl hydrosulfide; Ethyl mercaptan; Ethyl sulfhydrate; Ethyl thioalcohol; Mercaptoethane; Thioethanol; Thioethyl alcohol; 1-Mercaptoethane; C2H5SH; Aethanethiol; Aethylmercaptan; Etantiolo; Ethaanthiol; Ethylmercaptaan; Ethylmerkaptan; Etilmercaptano; LPG ethyl mercaptan 1010; UN 2363; 1-Ethylthiol; NSC 93877
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -46.15 | kJ/mol | Ccr | McCullough, Hubbard, et al., 1957 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -73.68 | kJ/mol | Ccr | McCullough, Hubbard, et al., 1957 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -2173.2 ± 0.42 | kJ/mol | Ccr | McCullough, Hubbard, et al., 1957 | Reanalyzed by Cox and Pilcher, 1970, Original value = -2172.0 ± 0.42 kJ/mol; ALS |
ΔcH°liquid | -2164. | kJ/mol | Ccb | Berthelot, 1901 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 207.02 | J/mol*K | N/A | McCullough, Scott, et al., 1952 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
117.99 | 299.05 | McCullough, Scott, et al., 1952 | T = 14 to 315 K. Unsmoothed experimental datum.; DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C2H5S- + =
By formula: C2H5S- + H+ = C2H6S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1488. ± 8.8 | kJ/mol | D-EA | Janousek, Reed, et al., 1980 | gas phase; B |
ΔrH° | 1486. ± 9.2 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1460. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
By formula: CH6N+ + C2H6S = (CH6N+ • C2H6S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61.1 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 82.0 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Sieck, 1985 | gas phase; M |
By formula: C4H8OS + H2O = C2H4O2 + C2H6S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -4.0 ± 0.3 | kJ/mol | Cm | Wadso, 1957 | liquid phase; Heat of hydrolysis; ALS |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.26 | M | N/A | missing citation also measured solubilities in salt solutions. | |
0.34 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.28 | 3400. | M | N/A | |
0.36 | V | N/A | ||
0.22 | M | N/A |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
McCullough, Hubbard, et al., 1957
McCullough, J.P.; Hubbard, W.N.; Frow, F.R.; Hossenlopp, I.A.; Waddington, G.,
Ethanethiol and 2-thiapropane: Heats of formation and isomerization; the chemical thermodynamic properties from 0 to 1000°K,
J. Am. Chem. Soc., 1957, 79, 561-566. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Berthelot, 1901
Berthelot, M.,
Chimie Organique. - Nouvelles recherches sur l'isomerie des ethers sulfocyaniques,
Compt. Rend., 1901, 132, 57-58. [all data]
McCullough, Scott, et al., 1952
McCullough, J.P.; Scott, D.W.; Finke, H.L.; Gross, M.E.; Williamson, K.D.; Pennington, R.E.; Waddington, G.; Huffman, H.M.,
Ethanethiol (ethyl mercaptan): thermodynamic properties in the solid, liquid and vapor states. Thermodynamic functions to 1000K,
J. Am. Chem. Soc., 1952, 74, 2801-2804. [all data]
Janousek, Reed, et al., 1980
Janousek, B.K.; Reed, K.J.; Brauman, J.I.,
Electron photodetachment from mercaptyl anions (RS- electron affinities of mercaptyl radicals and the S-H bond strength in mercaptans),
J. Am. Chem. Soc., 1980, 102, 3125. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Meot-Ner (Mautner) and Sieck, 1985
Meot-Ner (Mautner), M.; Sieck, L.W.,
The Ionic Hydrogen Bond and Ion Solvation. 4. SH+ O and NH+ S Bonds. Correlations with Proton Affinity. Mutual Effects of Weak and Strong Ligands in Mixed Clusters,
J. Phys. Chem., 1985, 89, 24, 5222, https://doi.org/10.1021/j100270a021
. [all data]
Wadso, 1957
Wadso, I.,
The heats of hydrolysis of some alkyl thiolesters,
Acta Chem. Scand., 1957, 11, 1745-1751. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid S°liquid Entropy of liquid at standard conditions d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.