Ethyl bromide
- Formula: C2H5Br
- Molecular weight: 108.965
- IUPAC Standard InChIKey: RDHPKYGYEGBMSE-UHFFFAOYSA-N
- CAS Registry Number: 74-96-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
View 3d structure (requires JavaScript / HTML 5) - Other names: Ethane, bromo-; Bromic ether; Bromoethane; Hydrobromic ether; Monobromoethane; C2H5Br; 1-Bromoethane; Bromure d'ethyle; Etylu bromek; Halon 2001; NCI-C55481; UN 1891; NSC 8824
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -15.2 | kcal/mol | Cm | Kudchadker and Kudchadker, 1979 | |
ΔfH°gas | -15.6 ± 1.5 | kcal/mol | Chyd | Ashcroft, Carson, et al., 1965 | |
ΔfH°gas | -14.79 ± 0.24 | kcal/mol | Chyd | Fowell, Lacher, et al., 1965 | |
ΔfH°gas | -15.45 ± 0.50 | kcal/mol | Eqk | Lane, Linnett, et al., 1953 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -22.83 ± 0.50 | kcal/mol | Chyd | Ashcroft, Carson, et al., 1965 | Reanalyzed by Pedley, Naylor, et al., 1986, Original value = -23.0 ± 1.5 kcal/mol; ALS |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
25.29 | 298.15 | Shehatta, 1993 | DH |
24.09 | 298. | Kurbatov, 1948 | T = -50 to 37°C; mean Cp, five temperatures.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 311.5 ± 0.4 | K | AVG | N/A | Average of 15 out of 16 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 155. ± 2. | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 503.8 | K | N/A | Majer and Svoboda, 1985 | |
Tc | 503.95 | K | N/A | Herz and Neukirch, 1923 | Uncertainty assigned by TRC = 0.4 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 61.5000 | atm | N/A | Herz and Neukirch, 1923 | Uncertainty assigned by TRC = 0.8000 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 4.65 | mol/l | N/A | Herz and Neukirch, 1923 | Uncertainty assigned by TRC = 0.03 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 6.754 | kcal/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 6.6 ± 0.3 | kcal/mol | V | Lane, Linnett, et al., 1953 | Heat of formation derived by Cox and Pilcher, 1970; ALS |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
6.463 | 311.6 | N/A | Majer and Svoboda, 1985 | |
6.43 | 349. | A | Stephenson and Malanowski, 1987 | Based on data from 334. to 504. K.; AC |
6.36 | 341. | A | Stephenson and Malanowski, 1987 | Based on data from 326. to 454. K.; AC |
7.41 | 467. | A | Stephenson and Malanowski, 1987 | Based on data from 452. to 503. K.; AC |
7.31 | 240. | E | Stephenson and Malanowski, 1987 | Based on data from 225. to 333. K. See also Li and Rossini, 1961 and Dykyj, 1970.; AC |
6.60 ± 0.02 | 305. | C | Svoboda, Majer, et al., 1977 | AC |
6.45 ± 0.02 | 312. | C | Svoboda, Majer, et al., 1977 | AC |
6.26 ± 0.02 | 323. | C | Svoboda, Majer, et al., 1977 | AC |
6.67 | 316. | N/A | Zmaczynski, 1930 | Based on data from 301. to 348. K. See also Boublik, Fried, et al., 1984.; AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kcal/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
305. to 323. | 11.80 | 0.3807 | 503.8 | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
301.29 to 348.51 | 4.10670 | 1121.371 | -38.478 | Zmaczynski, 1930, 2 | Coefficents calculated by NIST from author's data. |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.13 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.13 | V | N/A |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Br- + C2H5Br = (Br- • C2H5Br)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.0 ± 1.0 | kcal/mol | TDAs | Li, Ross, et al., 1996 | gas phase; B |
ΔrH° | 11.60 | kcal/mol | TDAs | Dougherty, 1974 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.2 | cal/mol*K | HPMS | Dougherty, 1974 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.90 ± 0.20 | kcal/mol | TDAs | Li, Ross, et al., 1996 | gas phase; B |
ΔrG° | 5.90 | kcal/mol | TDAs | Dougherty, 1974 | gas phase; B |
By formula: Cl- + C2H5Br = (Cl- • C2H5Br)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.6 ± 1.0 | kcal/mol | TDAs | Li, Ross, et al., 1996 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6.92 ± 0.20 | kcal/mol | TDAs | Li, Ross, et al., 1996 | gas phase; B |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Kudchadker and Kudchadker, 1979
Kudchadker, S.A.; Kudchadker, A.P.,
Ideal gas thermodynamic properties of selected bromoethanes and iodoethane,
J. Phys. Chem. Ref. Data, 1979, 8, 519-526. [all data]
Ashcroft, Carson, et al., 1965
Ashcroft, S.J.; Carson, A.S.; Carter, W.; Laye, P.G.,
Thermochemistry of reductions caused by lithium aluminium hydride. Part 3.- The C-halogen bond dissociation energies in ethyl iodine and ethyl bromide,
Trans. Faraday Soc., 1965, 61, 225-229. [all data]
Fowell, Lacher, et al., 1965
Fowell, P.; Lacher, J.R.; Park, J.D.,
Reaction heats of organic compounds. Part 3.-Heats of hydrogenation of methyl bromide and ethyl bromide,
Trans. Faraday Soc., 1965, 61, 1324-1327. [all data]
Lane, Linnett, et al., 1953
Lane, M.R.; Linnett, J.W.; Oswin, H.G.,
A study of the C2H4+HCl=C2H5Cl and C2H4+Hbr=C2H5Br equilibria,
Proc. Roy. Soc. London A, 1953, 216, 361-374. [all data]
Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P.,
Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]
Shehatta, 1993
Shehatta, I.,
Heat capacity at constant pressure of some halogen compounds,
Thermochim. Acta, 1993, 213, 1-10. [all data]
Kurbatov, 1948
Kurbatov, V.Ya.,
Heat capacity of liquids. 2. Heat capacity and the temperature dependence of heat capacity from halogen derivatives of acylic hydrocarbons,
Zh. Obshch. Kim., 1948, 18, 372-389. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Herz and Neukirch, 1923
Herz, W.; Neukirch, E.,
On Knowldge of the Critical State,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1923, 104, 433-50. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Li and Rossini, 1961
Li, J.C.M.; Rossini, F.D.,
Vapor Pressures and Boiling Points of the l-Fluoroalkanes, l-Chloroalkanes, l-Bromoalkanes, and l-Iodoalkanes, C 1 to C 20 .,
J. Chem. Eng. Data, 1961, 6, 2, 268-270, https://doi.org/10.1021/je60010a025
. [all data]
Dykyj, 1970
Dykyj, J.,
Petrochemica, 1970, 10, 2, 51. [all data]
Svoboda, Majer, et al., 1977
Svoboda, V.; Majer, V.; Veselý, F.; Pick, J.,
Heats of vaporization of alkyl bromides,
Collect. Czech. Chem. Commun., 1977, 42, 6, 1755-1760, https://doi.org/10.1135/cccc19771755
. [all data]
Zmaczynski, 1930
Zmaczynski, M.A.,
J. Chim. Phys. Phys.-Chim. Biol., 1930, 27, 503. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Zmaczynski, 1930, 2
Zmaczynski, M.A.,
Recherches Ebullioscopiques et Tonometriques Comparatives de 8 Substances Organiques Etalons,
J. Chim. Phys. Phys. Chim. Biol., 1930, 27, 503-517. [all data]
Li, Ross, et al., 1996
Li, C.; Ross, P.; Szulejko, J.; McMahon, T.B.,
High-Pressure Mass Spectrometric Investigations of the Potential Energy Surfaces of Gas-Phase Sn2 Reactions.,
J. Am. Chem. Soc., 1996, 118, 39, 9360, https://doi.org/10.1021/ja960565o
. [all data]
Dougherty, 1974
Dougherty, R.C.,
SN2 reactions in the gas phase. Alkyl group structural effects,
Org. Mass Spectrom., 1974, 8, 85. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Ion clustering data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.