Methane, dibromo-
- Formula: CH2Br2
- Molecular weight: 173.835
- IUPAC Standard InChIKey: FJBFPHVGVWTDIP-UHFFFAOYSA-N
- CAS Registry Number: 74-95-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Dibromomethane; Methylene bromide; Methylene dibromide; CH2Br2; Rcra waste number U068; UN 2664
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
104.1 | 298.15 | Shehatta, 1993 | |
105.3 | 300. | Harrison and Moelwyn-Hughes, 1957 | T = 243 to 303 K. |
127.2 | 298. | Kurbatov, 1948 | T = -22 to 98°C. Mean Cp, four temperatures. |
Phase change data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 370. ± 1. | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 220.45 | K | N/A | Timmermans, 1952 | Uncertainty assigned by TRC = 0.5 K; TRC |
Tfus | 220.63 | K | N/A | Timmermans, 1921 | Uncertainty assigned by TRC = 0.2 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 37.03 | kJ/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 36.97 ± 0.10 | kJ/mol | C | Laynez and Wadso, 1972 | ALS |
ΔvapH° | 37.0 ± 0.1 | kJ/mol | A,E | Laynez, Wadsö, et al., 1972 | AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
32.92 | 370.1 | N/A | Majer and Svoboda, 1985 | |
36.5 | 288. | C | Kudchadker, Kudchadker, et al., 1979 | Based on data from 273. to 373. K.; AC |
37.8 | 253. | N/A | Stull, 1947 | Based on data from 238. to 371. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
238.1 to 371.8 | 4.51734 | 1546.096 | -28.977 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
MS - José A. Martinho Simões
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
CHBr2- + =
By formula: CHBr2- + H+ = CH2Br2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1544. ± 13. | kJ/mol | G+TS | Born, Ingemann, et al., 2000 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1512. ± 13. | kJ/mol | IMRB | Born, Ingemann, et al., 2000 | gas phase; B |
C14H21MnO2 (solution) + (solution) = C8H7Br2MnO2 (solution) +
(solution)
By formula: C14H21MnO2 (solution) + CH2Br2 (solution) = C8H7Br2MnO2 (solution) + C7H16 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -51.0 ± 5.0 | kJ/mol | PAC | Yang and Yang, 1992 | solvent: Heptane; MS |
Henry's Law data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference |
---|---|---|---|
0.93 | 4400. | M | N/A |
1.1 | 4000. | X | N/A |
1.1 | 3900. | M | N/A |
1.1 | 3700. | X | N/A |
3.2 | L | N/A | |
1.1 | V | N/A |
IR Spectrum
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Mass spectrum (electron ionization)
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW-4074 |
NIST MS number | 229033 |
Vibrational and/or electronic energy levels
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Takehiko Shimanouchi
Symmetry: C2ν Symmetry Number σ = 2
Sym. | No | Approximate | Selected Freq. | Infrared | Raman | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species | type of mode | Value | Rating | Value | Phase | Value | Phase | |||
a1 | 1 | CH2 s-str | 3009 | C | 3009 W | gas | 3008 | gas | ||
a1 | 2 | CH2 scis | 1382 | C | 1382 VW | gas | 1402 | gas | ||
a1 | 3 | CBr2 s-str | 588 | C | 588 M | gas | 584 | gas | ||
a1 | 4 | CBr2 scis | 169 | C | 169 | gas | ||||
a2 | 5 | CH2 twist | 1095 | D | ia | 1095 | liq. | |||
b1 | 6 | CH2 a-str | 3073 | B | 3073 VW | gas | 3064 | liq. | ||
b1 | 7 | CH2 rock | 812 | B | 812 M | gas | 813 | liq. | ||
b2 | 8 | CH2 wag | 1195 | B | 1195 VS | gas | 1195 | liq. | ||
b2 | 9 | CBr a-str | 653 | B | 653 VS | gas | 640 | gas | ||
Source: Shimanouchi, 1972
Notes
VS | Very strong |
M | Medium |
W | Weak |
VW | Very weak |
ia | Inactive |
B | 1~3 cm-1 uncertainty |
C | 3~6 cm-1 uncertainty |
D | 6~15 cm-1 uncertainty |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Shehatta, 1993
Shehatta, I.,
Heat capacity at constant pressure of some halogen compounds,
Thermochim. Acta, 1993, 213, 1-10. [all data]
Harrison and Moelwyn-Hughes, 1957
Harrison, D.; Moelwyn-Hughes, E.A.,
The heat capacities of certain liquids,
Proc. Roy. Soc. (London), 1957, A239, 230-246. [all data]
Kurbatov, 1948
Kurbatov, V.Ya.,
Heat capacity of liquids. 2. Heat capacity and the temperature dependence of heat capacity from halogen derivatives of acylic hydrocarbons,
Zh. Obshch. Kim., 1948, 18, 372-389. [all data]
Timmermans, 1952
Timmermans, J.,
Freezing points of organic compounds. VVI New determinations.,
Bull. Soc. Chim. Belg., 1952, 61, 393. [all data]
Timmermans, 1921
Timmermans, J.,
The Freezing Points of Organic Substances IV. New Exp. Determinations,
Bull. Soc. Chim. Belg., 1921, 30, 62. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Laynez and Wadso, 1972
Laynez, J.; Wadso, I.,
Enthalpies of vaporization of organic compounds. IX. Some halogen substituted hydrocarbons and esters,
Acta Chem. Scand., 1972, 26, 3148. [all data]
Laynez, Wadsö, et al., 1972
Laynez, José; Wadsö, Ingemar; Haug, Arne; Songstad, J.; Pilotti, Åke,
Enthalpies of Vaporization of Organic Compounds. IX. Some Halogen Substituted Hydrocarbons and Esters.,
Acta Chem. Scand., 1972, 26, 3148-3152, https://doi.org/10.3891/acta.chem.scand.26-3148
. [all data]
Kudchadker, Kudchadker, et al., 1979
Kudchadker, A.P.; Kudchadker, S.A.; Shukla, R.P.; Patnaik, P.R.,
Vapor pressures and boiling points of selected halomethanes,
J. Phys. Chem. Ref. Data, 1979, 8, 2, 499, https://doi.org/10.1063/1.555600
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Born, Ingemann, et al., 2000
Born, M.; Ingemann, S.; Nibbering, N.M.M.,
Thermochemical properties of halogen-substituted methanes, methyl radicals, and carbenes in the gas phase,
Int. J. Mass Spectrom., 2000, 194, 2-3, 103-113, https://doi.org/10.1016/S1387-3806(99)00125-6
. [all data]
Yang and Yang, 1992
Yang, P.-F.; Yang, K.G.,
J. Am. Chem. Soc., 1992, 114, 6937. [all data]
Shimanouchi, 1972
Shimanouchi, T.,
Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Tboil Boiling point Tfus Fusion (melting) point d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.