Methanethiol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-46.65 ± 0.54kJ/molCcrGood, Lacina, et al., 1961ALS
Quantity Value Units Method Reference Comment
Δcliquid-1520.8 ± 0.50kJ/molCcrGood, Lacina, et al., 1961Reanalyzed by Cox and Pilcher, 1970, Original value = -1519. ± 0.50 kJ/mol; ALS
Quantity Value Units Method Reference Comment
liquid163.22J/mol*KN/ARussell, Osborne, et al., 1942DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
89.04280.Russell, Osborne, et al., 1942T = 15 to 280 K.; DH

Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Fluorine anion + Methanethiol = (Fluorine anion • Methanethiol)

By formula: F- + CH4S = (F- • CH4S)

Quantity Value Units Method Reference Comment
Δr143. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
Δr97.1J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr114. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

MeS anion + Hydrogen cation = Methanethiol

By formula: CH3S- + H+ = CH4S

Quantity Value Units Method Reference Comment
Δr1496. ± 8.4kJ/molD-EASchwartz, Davico, et al., 2000gas phase; B
Δr1496. ± 8.4kJ/molD-EAMoran and Ellison, 1988gas phase; B
Δr1493. ± 9.2kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr1467. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

CH3S- + Hydrogen cation = Methanethiol

By formula: CH3S- + H+ = CH4S

Quantity Value Units Method Reference Comment
Δr1654. ± 11.kJ/molG+TSKass, Guo, et al., 1990gas phase; Acidity between D2O and Me2NH.; B
Δr1638. ± 32.kJ/molD-EAKass, Guo, et al., 1990gas phase; Between O2 and SO2. Explains bad anchor in McIver Jr. and Fukuda, 1982; B
Quantity Value Units Method Reference Comment
Δr1624. ± 10.kJ/molIMRBKass, Guo, et al., 1990gas phase; Acidity between D2O and Me2NH.; B

(CH6N+ • 2Acetonitrile) + Methanethiol = (CH6N+ • Methanethiol • 2Acetonitrile)

By formula: (CH6N+ • 2C2H3N) + CH4S = (CH6N+ • CH4S • 2C2H3N)

Quantity Value Units Method Reference Comment
Δr33.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AMeot-Ner (Mautner) and Sieck, 1985gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
10.270.PHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; Entropy change calculated or estimated; M

Chlorine anion + Methanethiol = (Chlorine anion • Methanethiol)

By formula: Cl- + CH4S = (Cl- • CH4S)

Quantity Value Units Method Reference Comment
Δr65. ± 13.kJ/molIMRBStaneke, Groothuis, et al., 1995gas phase; Chloride affinity comparable to that of CHCl3; B
Quantity Value Units Method Reference Comment
Δr45. ± 13.kJ/molIMRBStaneke, Groothuis, et al., 1995gas phase; Chloride affinity comparable to that of CHCl3; B

MeCO2 anion + Methanethiol = (MeCO2 anion • Methanethiol)

By formula: C2H3O2- + CH4S = (C2H3O2- • CH4S)

Quantity Value Units Method Reference Comment
Δr62.3 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr95.4J/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr34. ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B

(CH6N+ • Acetonitrile) + Methanethiol = (CH6N+ • Methanethiol • Acetonitrile)

By formula: (CH6N+ • C2H3N) + CH4S = (CH6N+ • CH4S • C2H3N)

Quantity Value Units Method Reference Comment
Δr41.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr83.7J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

CH6N+ + Methanethiol = (CH6N+ • Methanethiol)

By formula: CH6N+ + CH4S = (CH6N+ • CH4S)

Quantity Value Units Method Reference Comment
Δr56.1kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr92.5J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

Hydrogen iodide + Methylsulfenyliodide = Methanethiol + Iodine

By formula: HI + CH3IS = CH4S + I2

Quantity Value Units Method Reference Comment
Δr-12.0 ± 2.3kJ/molEqkShum and Benson, 1983gas phase; ALS

Ion clustering data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

CH6N+ + Methanethiol = (CH6N+ • Methanethiol)

By formula: CH6N+ + CH4S = (CH6N+ • CH4S)

Quantity Value Units Method Reference Comment
Δr56.1kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr92.5J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

(CH6N+ • Acetonitrile) + Methanethiol = (CH6N+ • Methanethiol • Acetonitrile)

By formula: (CH6N+ • C2H3N) + CH4S = (CH6N+ • CH4S • C2H3N)

Quantity Value Units Method Reference Comment
Δr41.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr83.7J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

(CH6N+ • 2Acetonitrile) + Methanethiol = (CH6N+ • Methanethiol • 2Acetonitrile)

By formula: (CH6N+ • 2C2H3N) + CH4S = (CH6N+ • CH4S • 2C2H3N)

Quantity Value Units Method Reference Comment
Δr33.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AMeot-Ner (Mautner) and Sieck, 1985gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
10.270.PHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; Entropy change calculated or estimated; M

MeCO2 anion + Methanethiol = (MeCO2 anion • Methanethiol)

By formula: C2H3O2- + CH4S = (C2H3O2- • CH4S)

Quantity Value Units Method Reference Comment
Δr62.3 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr95.4J/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr34. ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B

Chlorine anion + Methanethiol = (Chlorine anion • Methanethiol)

By formula: Cl- + CH4S = (Cl- • CH4S)

Quantity Value Units Method Reference Comment
Δr65. ± 13.kJ/molIMRBStaneke, Groothuis, et al., 1995gas phase; Chloride affinity comparable to that of CHCl3; B
Quantity Value Units Method Reference Comment
Δr45. ± 13.kJ/molIMRBStaneke, Groothuis, et al., 1995gas phase; Chloride affinity comparable to that of CHCl3; B

Fluorine anion + Methanethiol = (Fluorine anion • Methanethiol)

By formula: F- + CH4S = (F- • CH4S)

Quantity Value Units Method Reference Comment
Δr143. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
Δr97.1J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr114. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

Mass spectrum (electron ionization)

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 86

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Good, Lacina, et al., 1961
Good, W.D.; Lacina, J.L.; McCullough, J.P., Methanethiol and carbon disulfide: Heats of combustion and formation by rotating-bomb calorimetry, J. Phys. Chem., 1961, 65, 2229-2231. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Russell, Osborne, et al., 1942
Russell, H., Jr.; Osborne, D.W.; Yost, D.M., The heat capacity, entropy, heats of fusion, transition, and vaporization and vapor pressures of methyl mercaptan, J. Am. Chem. Soc., 1942, 64, 165-169. [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Schwartz, Davico, et al., 2000
Schwartz, R.L.; Davico, G.E.; Lineberger, W.C., Negative-ion photoelectron spectroscopy of CH3S-, J. Electron Spectros. Rel. Phenom., 2000, 108, 1-3, 163-168, https://doi.org/10.1016/S0368-2048(00)00125-0 . [all data]

Moran and Ellison, 1988
Moran, S.; Ellison, G.B., Photoelectron Spectroscopy of Sulfur Ions, J. Phys. Chem., 1988, 92, 7, 1794, https://doi.org/10.1021/j100318a021 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Kass, Guo, et al., 1990
Kass, S.R.; Guo, H.-Z.; Dahlke, G.D., The Thiomethyl Anion: Formation, Reactivity, and Thermodynamic Properties, J. Am. Soc. Mass Spectrom., 1990, 1, 5, 366, https://doi.org/10.1016/1044-0305(90)85016-F . [all data]

McIver Jr. and Fukuda, 1982
McIver Jr.; Fukuda, E.K., Equilibrium Electron Affinities, Lec. Notes in Chem., 1982, 31, 165. [all data]

Meot-Ner (Mautner) and Sieck, 1985
Meot-Ner (Mautner), M.; Sieck, L.W., The Ionic Hydrogen Bond and Ion Solvation. 4. SH+ O and NH+ S Bonds. Correlations with Proton Affinity. Mutual Effects of Weak and Strong Ligands in Mixed Clusters, J. Phys. Chem., 1985, 89, 24, 5222, https://doi.org/10.1021/j100270a021 . [all data]

Staneke, Groothuis, et al., 1995
Staneke, P.O.; Groothuis, G.; Ingemann, S.; Nibbering, N.M.M., Formation, stability and structure of radical anions of chloroform, tetrachloromethane and fluorotrichloromethane in the gas phase, Int. J. Mass Spectrom. Ion Proc., 1995, 142, 1-2, 83, https://doi.org/10.1016/0168-1176(94)04127-S . [all data]

Meot-ner, 1988
Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Shum and Benson, 1983
Shum, L.G.S.; Benson, S.W., Thermochemnistry and kinetics of the reaction of methyl mercaptan with iodine, Int. J. Chem. Kinet., 1983, 15, 433-453. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), References