Methane, iodo-
- Formula: CH3I
- Molecular weight: 141.9390
- IUPAC Standard InChIKey: INQOMBQAUSQDDS-UHFFFAOYSA-N
- CAS Registry Number: 74-88-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
View 3d structure (requires JavaScript / HTML 5) - Isotopologues:
- Other names: Iodomethane; Methyl iodide; CH3I; Halon 10001; Iodometano; Iodure de methyle; Jod-methan; Joodmethaan; Methyljodid; Methyljodide; Metylu jodek; Monoioduro di metile; Rcra waste number U138; UN 2644; Methyl iodine; Monoiodomethane; NSC 9366
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 14.3 ± 1.4 | kJ/mol | Eqk | Golden, Walsh, et al., 1965 | Reanalyzed by Cox and Pilcher, 1970, Original value = 13.7 ± 0.67 kJ/mol |
ΔfH°gas | 14.6 ± 1.0 | kJ/mol | Eqk | Goy and Pritchard, 1965 | Reanalyzed by Cox and Pilcher, 1970, Original value = 14.2 ± 1.0 kJ/mol |
ΔfH°gas | 16. ± 1. | kJ/mol | Chyd | Carson, Carter, et al., 1961 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -13.6 ± 0.5 | kJ/mol | Ccr | Carson, Laye, et al., 1993 | ALS |
ΔfH°liquid | -12. ± 1. | kJ/mol | Chyd | Carson, Carter, et al., 1961 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -808.6 ± 0.3 | kJ/mol | Ccr | Carson, Laye, et al., 1993 | ALS |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
82.75 | 298.15 | Carson, Laye, et al., 1993 | DH |
82.0 | 298.15 | Shehatta, 1993 | DH |
82.76 | 298.2 | Low and Moelwyn-Hughes, 1962 | T = 293 to 308 K.; DH |
82.68 | 300. | Harrison and Moelwyn-Hughes, 1957 | T = 243 to 303 K.; DH |
148.1 | 298. | Kurbatov, 1948 | T = -56 to 35°C. Mean Cp five temperatures.; DH |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Vibrational and/or electronic energy levels, References, Notes
Data compiled by: Coblentz Society, Inc.
- GAS (200 mmHg DILUTED TO A TOTAL PRESSURE OF 600 mmHg WITH N2); DOW KBr FOREPRISM; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- LIQUID; Not specified, most likely a prism, grating, or hybrid spectrometer.; DIGITIZED BY NIST FROM HARD COPY; 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Vibrational and/or electronic energy levels
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Takehiko Shimanouchi
Symmetry: C3ν Symmetry Number σ = 3
Sym. | No | Approximate | Selected Freq. | Infrared | Raman | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species | type of mode | Value | Rating | Value | Phase | Value | Phase | |||
a1 | 1 | CH3 s-str | 2933 | E | 2969.8 M | gas | FR(2ν5) | |||
a1 | 1 | CH3 s-str | 2933 | E | 2861.0 M | gas | FR(2ν5) | |||
a1 | 2 | CH3 s-deform | 1252 | A | 1251.5 S | gas | ||||
a1 | 3 | CI str | 533 | A | 532.8 S | gas | ||||
e | 4 | CH3 d-str | 3060 | A | 3060.06 S | gas | ||||
e | 5 | CH3 d-deform | 1436 | C | 1435.5 M | gas | FR(ν3+ν6) | |||
e | 6 | CH3 rock | 882 | A | 882.4 M | gas | ||||
Source: Shimanouchi, 1972
Notes
S | Strong |
M | Medium |
FR | Fermi resonance with an overtone or a combination tone indicated in the parentheses. |
A | 0~1 cm-1 uncertainty |
C | 3~6 cm-1 uncertainty |
E | 15~30 cm-1 uncertainty |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Golden, Walsh, et al., 1965
Golden, D.M.; Walsh, R.; Benson, S.W.,
The thermochemistry of the gas phase equilibrium I2 + CH4 «=» CH3I + HI and the heat of formation of the methyl radical,
J. Am. Chem. Soc., 1965, 87, 4053-4057. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Goy and Pritchard, 1965
Goy, C.A.; Pritchard, H.O.,
Kinetics and thermodynamics of the reaction between iodine and methane and the heat of formation of methyl iodide,
J. Phys. Chem., 1965, 69, 3040-3041. [all data]
Carson, Carter, et al., 1961
Carson, A.S.; Carter, W.; Pedley, J.B.,
The thermochemistry of reductions caused by lithium aluminium hydride I. The C-I bond dissociation energy in CH3I,
Proc. Roy. Soc. London A, 1961, 260, 550-557. [all data]
Carson, Laye, et al., 1993
Carson, A.S.; Laye, P.G.; Pedley, J.B.; Welsby, A.M.,
The enthalpies of formation iodomethane, diiodomethane, triiodomethane, and tetraiodomethane by rotating combustion calorimetry,
J. Chem. Thermodyn., 1993, 25, 261-269. [all data]
Shehatta, 1993
Shehatta, I.,
Heat capacity at constant pressure of some halogen compounds,
Thermochim. Acta, 1993, 213, 1-10. [all data]
Low and Moelwyn-Hughes, 1962
Low, D.I.R.; Moelwyn-Hughes, E.A.,
The heat capacities of acetone, methyl iodide and mixtures thereof in the liquid state,
Proc. Roy. Soc. (London), 1962, A267, 384-394. [all data]
Harrison and Moelwyn-Hughes, 1957
Harrison, D.; Moelwyn-Hughes, E.A.,
The heat capacities of certain liquids,
Proc. Roy. Soc. (London), 1957, A239, 230-246. [all data]
Kurbatov, 1948
Kurbatov, V.Ya.,
Heat capacity of liquids. 2. Heat capacity and the temperature dependence of heat capacity from halogen derivatives of acylic hydrocarbons,
Zh. Obshch. Kim., 1948, 18, 372-389. [all data]
Shimanouchi, 1972
Shimanouchi, T.,
Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.