Ethane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-84. ± 0.4kJ/molReviewManion, 2002adopted recommendation of Gurvich, Veyts, et al., 1991; DRB
Δfgas-83.8 ± 0.3kJ/molCcbPittam and Pilcher, 1972ALS
Δfgas-84.67 ± 0.49kJ/molCcbProsen and Rossini, 1945Hf derived from Heat of Hydrogenation; ALS
Quantity Value Units Method Reference Comment
Δcgas-1560.7 ± 0.3kJ/molCcbPittam and Pilcher, 1972Corresponding Δfgas = -83.85 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-1559.9 ± 0.46kJ/molCcbProsen and Rossini, 1945Hf derived from Heat of Hydrogenation; Corresponding Δfgas = -84.64 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-1559.8 ± 0.46kJ/molCcbRossini, 1934Corresponding Δfgas = -84.68 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
35.70100.Gurvich, Veyts, et al., 1989p=1 bar. Recommended entropies and heat capacities are in good agreement with those obtained from other statistical thermodynamic calculations [ Pitzer K.S., 1944, Chao J., 1973, Pamidimukkala K.M., 1982].; GT
42.30200.
52.49298.15
52.71300.
65.46400.
77.94500.
89.19600.
99.14700.
107.94800.
115.71900.
122.551000.
128.551100.
133.801200.
138.391300.
142.401400.
145.901500.
148.981600.
151.671700.
154.041800.
156.141900.
158.002000.
159.652100.
161.122200.
162.432300.
163.612400.
164.672500.
165.632600.
166.492700.
167.282800.
168.002900.
168.653000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
41.66 ± 0.31189.20Halford J.O., 1957Please also see Eucken A., 1933, Kistiakowsky G.B., 1939, Dailey B.P., 1943.; GT
43.25 ± 0.32209.30
45.08 ± 0.34229.65
47.27 ± 0.35249.90
47.17 ± 0.35250.15
49.68 ± 0.37272.00
49.51 ± 0.04272.07
50.66 ± 0.42279.00
52.14 ± 0.39292.00
53.27 ± 0.07302.70
57.40 ± 0.04335.82
58.91347.65
60.38359.75
61.04 ± 0.10364.78
62.10 ± 0.47373.60
63.89387.55
72.43451.95
80.08520.55
86.27561.65
90.46603.25

IR Spectrum

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


References

Go To: Top, Gas phase thermochemistry data, IR Spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Manion, 2002
Manion, J.A., Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703 . [all data]

Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, 4th edition, Volume 2, Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all data]

Pittam and Pilcher, 1972
Pittam, D.A.; Pilcher, G., Measurements of heats of combustion by flame calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane, J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229. [all data]

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Rossini, 1934
Rossini, F.D., Calorimetric determination of the heats of combustion of ethane, propane, normal butane, and normal pentane, J. Res. NBS, 1934, 12, 735-750. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

Pitzer K.S., 1944
Pitzer K.S., Thermodynamics of gaseous paraffins. Specific heat and related properties, Ind. Eng. Chem., 1944, 36, 829-831. [all data]

Chao J., 1973
Chao J., Ideal gas thermodynamic properties of ethane and propane, J. Phys. Chem. Ref. Data, 1973, 2, 427-438. [all data]

Pamidimukkala K.M., 1982
Pamidimukkala K.M., Ideal gas thermodynamic properties of CH3, CD3, CD4, C2D2, C2D4, C2D6, C2H6, CH3N2CH3, and CD3N2CD3, J. Phys. Chem. Ref. Data, 1982, 11, 83-99. [all data]

Halford J.O., 1957
Halford J.O., Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity, J. Phys. Chem., 1957, 61, 1536-1539. [all data]

Eucken A., 1933
Eucken A., Molar heats and normal frequencies of ethane and ethylene, Z. Phys. Chem., 1933, B20, 184-194. [all data]

Kistiakowsky G.B., 1939
Kistiakowsky G.B., Gaseous heat capacities. I. The method and the heat capacities of C2H6 and C2D6, J. Chem. Phys., 1939, 7, 281-288. [all data]

Dailey B.P., 1943
Dailey B.P., The heat capacities at higher temperatures of ethane and propane, J. Am. Chem. Soc., 1943, 65, 42-44. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, IR Spectrum, References