lithium chloride

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Constants of diatomic molecules

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through January, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 7Li35Cl
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
K 3pπ 2Π 513500 1090 1         K ← X 513700
Radler, Sonntag, et al., 1976
J 3σ 2Σ 505900 1030 1         J ← X 506100
Radler, Sonntag, et al., 1976
I 2pπ 2Π 479200 850 1         I ← X 479300
Radler, Sonntag, et al., 1976
H 2σ 2Σ 463900 950 1         H ← X 464000
Radler, Sonntag, et al., 1976
The energy loss spectrum of 25 keV electron has peaks at 5.3, 7.2, and 8.9 eV.
Geiger and Pfeiffer, 1968
Continuous absorption above 40000 cm-1, first maximum 2 at 42800 cm-1. 3
Muller, 1927; Davidovits and Brodhead, 1967
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
A 4           A ← X 
Berry and Klemperer, 1957
X 1Σ+ 0 643.31 5 4.501 5  0.70652224 0.00800961 0.00003966 3.4087E-6 -0.0190E-6 2.020673 6 7  
Klemperer and Rice, 1957; Klemperer, Norris, et al., 1960
Rotation sp.
Lide, Cahill, et al., 1964; Pearson and Gordy, 1969
Mol. beam rf electric reson. $I
Marple and Trischka, 1956; Hebert, Lovas, et al., 1968; Gallagher, Hilborn, et al., 1972; Freeman, Johnson, et al., 1974
Mol. beam magn. reson. 8
Mehran, Brooks, et al., 1966

Notes

1First members of two Rydberg series converging to the Li is ionization limit of LiCl at ~66eV (532300 cm-1); vibrational numbering not established.
2Also observed in the electron energy loss spectrum.
3Absorption cross sections Davidovits and Brodhead, 1967.
4Diffuse absorption bands at 35642, 35032, 34482 cm-1.
5Calculated Pearson and Gordy, 1969 from the rotational constants by use of Dunham's theory. From the infrared spectrum of the isotopic mixture Klemperer, Norris, et al., 1960 obtain we = 641.1, wexe = 4.2. For 6Li35Cl Moran and Trischka, 1961 find we ~ 705 by the molecular beam electric resonance method.
6From the effective Be. Using the data of Pearson and Gordy, 1969 for the four LiCl isotopes Watson, 1973 has determined re at the minimum of the Born-Oppenheimer potential as 2.020700 .
7Rot.-vibr. Sp. 10
8Nuclear reorientation spectrum of Li Kusch, 1949, Logan, Cote, et al., 1952, Kusch, 1959.
9Thermochemical value Brewer and Brackett, 1961, Bulewicz, Phillips, et al., 1961, Hildenbrand, Hall, et al., 1964. A slightly higher value was suggested by Gurvich and Veits, 1958.
10IR spectrum of matrix isolated LiCL Snelson and Pitzer, 1963,136.
11Electric dipole moment of 6Li35Cl: μel[D] = 7.0853 + 0.0868(v+1/2) + 0.00056(v+1/2)2 Hebert, Lovas, et al., 1968, see also Marple and Trischka, 1956,134. For electric quadrupole and other hyperfine coupling constants see Marple and Trischka, 1956, Gallagher, Hilborn, et al., 1972. The Zeeman spectrum was also studied by the molecular beam electric resonance method Freeman, Johnson, et al., 1974; gJ(7Li35Cl) = +0.10042 and +0.10064 μN for v=0 and 1, respectively, superseding an earlier value by the magnetic resonance method Mehran, Brooks, et al., 1966.
12From D00(LiCl) and the electron affinities of LiCl and Cl.
13From the photoelectron spectrum of LiCl- Carlstein, Peterson, et al., 1976; I.P. is reasonably close to the calculated electron affinity of LiCl [0.54 eV Jordan and Luken, 1976]; see also Jordan, 1976.
14The relative intensities of the photoelectron peaks have been compared Carlstein, Peterson, et al., 1976 with calculated Franck-Condon factors.

References

Go To: Top, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Radler, Sonntag, et al., 1976
Radler, K.; Sonntag, B.; Chang, T.C.; Schwarz, W.H.E., Experimental and theoretical investigation of the Li 1s spectra of molecular lithium halides, Chem. Phys., 1976, 13, 363. [all data]

Geiger and Pfeiffer, 1968
Geiger, J.; Pfeiffer, H.-C., Untersuchung der Anregung innerer Elektronen von Alkalihalogenidmolekulen im Energieverlustspektrum von 25 keV-Elektronen, Z. Phys., 1968, 208, 105. [all data]

Muller, 1927
Muller, L.A., 4. absorptionsspektren der alkalihalogenide in wasseriger losung und im dampf, Ann. Phys. (Leipzig), 1927, 82, 39. [all data]

Davidovits and Brodhead, 1967
Davidovits, P.; Brodhead, D.C., Ultraviolet absorption cross sections for the alkali halide vapors, J. Chem. Phys., 1967, 46, 2968. [all data]

Berry and Klemperer, 1957
Berry, R.S.; Klemperer, W., Spectra of the alkali halides. III. Electronic spectra of lithium chloride, lithium bromide, and lithium iodide, J. Chem. Phys., 1957, 26, 724. [all data]

Klemperer and Rice, 1957
Klemperer, W.; Rice, S.A., Infrared spectra of the alkali halides. I. Lithium halides, J. Chem. Phys., 1957, 26, 618. [all data]

Klemperer, Norris, et al., 1960
Klemperer, W.; Norris, W.G.; Buchler, A.; Emslie, A.G., Infrared spectra of lithium halide monomers, J. Chem. Phys., 1960, 33, 1534. [all data]

Lide, Cahill, et al., 1964
Lide, D.R., Jr.; Cahill, P.; Gold, L.P., Microwave spectrum of lithium chloride, J. Chem. Phys., 1964, 40, 156. [all data]

Pearson and Gordy, 1969
Pearson, E.F.; Gordy, W., Millimeter- and submillimeter-wave spectra and molecular constants of LiF and LiCl, Phys. Rev., 1969, 177, 52. [all data]

Marple and Trischka, 1956
Marple, D.T.F.; Trischka, J.W., Radio-frequency spectra of Li6Cl by the molecular beam electric resonance method, Phys. Rev., 1956, 103, 597. [all data]

Hebert, Lovas, et al., 1968
Hebert, A.J.; Lovas, F.J.; Melendres, C.A.; Hollowell, C.D.; Story, T.L., Jr.; Street, K., Jr., Dipole moments of some alkali halide molecules by the molecular beam electric resonance method, J. Chem. Phys., 1968, 48, 2824. [all data]

Gallagher, Hilborn, et al., 1972
Gallagher, T.F., Jr.; Hilborn, R.C.; Ramsey, N.F., Hyperfine spectra of 7Li35Cl and 7Li37Cl, J. Chem. Phys., 1972, 56, 5972. [all data]

Freeman, Johnson, et al., 1974
Freeman, R.R.; Johnson, D.W.; Ramsey, N.F., Molecular beam electric resonance study of the molecular Zeeman spectrum of lithium chloride, J. Chem. Phys., 1974, 61, 3471. [all data]

Mehran, Brooks, et al., 1966
Mehran, F.; Brooks, R.A.; Ramsey, N.F., Rotational magnetic moments of alkali-halide molecules, Phys. Rev., 1966, 141, 93. [all data]

Moran and Trischka, 1961
Moran, T.I.; Trischka, J.W., New determinations of the vibrational constants of Li-Li6F and Li6Cl35 by the molecular beam electric resonance method, J. Chem. Phys., 1961, 34, 923. [all data]

Watson, 1973
Watson, J.K.G., The isotope dependence of the equilibrium rotational constants in 1Σ states of diatomic molecules, J. Mol. Spectrosc., 1973, 45, 99. [all data]

Kusch, 1949
Kusch, P., On the nuclear electric quadrupole moment of Li6, Phys. Rev., 1949, 75, 887. [all data]

Logan, Cote, et al., 1952
Logan, R.A.; Cote, R.E.; Kusch, P., The sign of the quadrupole interaction energy in diatomic molecules, Phys. Rev., 1952, 86, 280. [all data]

Kusch, 1959
Kusch, P., Nuclear reorientation spectrum of Li7 in the gaseous monomers and dimers of the lithium halides, J. Chem. Phys., 1959, 30, 52. [all data]

Brewer and Brackett, 1961
Brewer, L.; Brackett, E., The dissociation energies of gaseous alkali halides, Chem. Rev., 1961, 61, 425. [all data]

Bulewicz, Phillips, et al., 1961
Bulewicz, E.M.; Phillips, L.F.; Sugden, T.M., Determination of dissociation constants and heats of formation of simple molecules by flame photometry. Part 8. Stabilities of the gaseous diatomic halides of certain metals, Trans. Faraday Soc., 1961, 57, 921. [all data]

Hildenbrand, Hall, et al., 1964
Hildenbrand, D.L.; Hall, W.F.; Ju, F.; Potter, N.D., Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides, J. Chem. Phys., 1964, 40, 2882. [all data]

Gurvich and Veits, 1958
Gurvich, L.V.; Veits, I.V., Determination of molecular dissociation energies from flame reaction equilibrium studies, Bull. Acad. Sci. USSR, Phys. Ser. Engl. Transl., 1958, 22, 670-673. [all data]

Snelson and Pitzer, 1963
Snelson, A.; Pitzer, K.S., Infrared spectra by matrix isolation of lithium fluoride, lithium chloride and sodium fluoride, J. Phys. Chem., 1963, 67, 882. [all data]

Carlstein, Peterson, et al., 1976
Carlstein, J.L.; Peterson, J.R.; Lineberger, W.C., Binding of an electron by the field of a molecular dipole - LiCl-, Chem. Phys. Lett., 1976, 37, 5. [all data]

Jordan and Luken, 1976
Jordan, K.D.; Luken, W., Theoretical study of the binding of an electron to a molecular dipole: LiCl-, J. Chem. Phys., 1976, 64, 2760. [all data]

Jordan, 1976
Jordan, K.D., Correlation between molecular electron affinities and dipole moments, J. Chem. Phys., 1976, 65, 1214. [all data]


Notes

Go To: Top, Constants of diatomic molecules, References