potassium chloride

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfliquid-100.81kcal/molReviewChase, 1998Data last reviewed in March, 1966
Quantity Value Units Method Reference Comment
liquid,1 bar20.71cal/mol*KReviewChase, 1998Data last reviewed in March, 1966
Quantity Value Units Method Reference Comment
Δfsolid-104.37kcal/molReviewChase, 1998Data last reviewed in March, 1966
Quantity Value Units Method Reference Comment
solid19.73cal/mol*KReviewChase, 1998Data last reviewed in March, 1966

Liquid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 1044. to 2000.
A 17.59010
B 0.000000
C 0.000000
D 0.000000
E 0.000000
F -106.0550
G 41.99830
H -100.8110
ReferenceChase, 1998
Comment Data last reviewed in March, 1966

Solid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 900.900. to 1044.
A 8.464620-171.4590
B 16.73870298.2459
C -21.84090-169.3390
D 12.5536033.80581
E 0.03667824.77801
F -107.34600.420670
G 26.05120-176.4180
H -104.3700-104.3700
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in March, 1966 Data last reviewed in March, 1966

Phase change data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
1170. to 1466.4.610976910.833-176.083Barchuk and Dubovoi, 1973Coefficents calculated by NIST from author's data.
1094. to 1680.4.776657440.691-122.709Stull, 1947Coefficents calculated by NIST from author's data.

Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Potassium ion (1+) + potassium chloride = (Potassium ion (1+) • potassium chloride)

By formula: K+ + ClK = (K+ • ClK)

Quantity Value Units Method Reference Comment
Δr41.2kcal/molMSChupka, 1959gas phase; Knudsen cell; M
Quantity Value Units Method Reference Comment
Δr19.6cal/mol*KMSChupka, 1959gas phase; Knudsen cell; M

3Pyridine, 1-oxide + potassium chloride = 3Pyridine + KClO3

By formula: 3C5H5NO + ClK = 3C5H5N + KClO3

Quantity Value Units Method Reference Comment
Δr75.2 ± 2.4kcal/molCmShaofeng and Pilcher, 1988solid phase; ALS

References

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Barchuk and Dubovoi, 1973
Barchuk, V.T.; Dubovoi, P.G., Measurement of a Saturated Vapor Pressure Over Highly Volitile Salt Melts, Ukr. Khim. Zh. (Russ. Ed.), 1973, 39, 8, 838-840. [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Chupka, 1959
Chupka, W.A., Dissociation Energies of Some Gaseous Halide Complex Ions and the Hydrated Ion K(H2O)+, J. Chem. Phys., 1959, 40, 2, 458, https://doi.org/10.1063/1.1729974 . [all data]

Shaofeng and Pilcher, 1988
Shaofeng, L.; Pilcher, G., Enthalpy of formation of pyridine-N-oxide: the dissociation enthalpy of the (N-O) bond, J. Chem. Thermodyn., 1988, 20, 463-465. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References