Xenon
- Formula: Xe
- Molecular weight: 131.293
- IUPAC Standard InChIKey: FHNFHKCVQCLJFQ-UHFFFAOYSA-N
- CAS Registry Number: 7440-63-3
- Chemical structure:
This structure is also available as a 2d Mol file - Other names: Xe; UN 2036; UN 2591; Xenon atom; Xeneisol 133A; Xenomatic
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- NIST Atomic Spectra Database - Lines Holdings (on physics web site)
- NIST Atomic Spectra Database - Levels Holdings (on physics web site)
- NIST Atomic Spectra Database - Ground states and ionization energies (on physics web site)
- Gas Phase Kinetics Database
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°gas,1 bar | 169.685 ± 0.003 | J/mol*K | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
S°gas,1 bar | 169.68 | J/mol*K | Review | Chase, 1998 | Data last reviewed in March, 1982 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 6000. |
---|---|
A | 20.78600 |
B | 7.449320×10-7 |
C | -2.049401×10-7 |
D | 1.066661×10-8 |
E | 2.500261×10-8 |
F | -6.197350 |
G | 194.8380 |
H | 0.000000 |
Reference | Chase, 1998 |
Comment | Data last reviewed in March, 1982 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 165.02 | K | N/A | Ziegler, Mullins, et al., 1966 | Uncertainty assigned by TRC = 0.05 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 161.38 | K | N/A | Kemp, Kemp, et al., 1985 | Uncertainty assigned by TRC = 0.02 K; studied as possible fixed point for IPTS-68; TRC |
Ttriple | 161.37 | K | N/A | Ziegler, Mullins, et al., 1966 | Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 161.4 | K | N/A | Lahr and Eversole, 1962 | Uncertainty assigned by TRC = 0.3 K; TRC |
Ttriple | 161.36 | K | N/A | Clusius and Weigand, 1940 | Uncertainty assigned by TRC = 0.2 K; See property X for dP/dT for c-l equil.; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ptriple | 0.81600 | bar | N/A | Fonseca and Lobo, 1989 | Uncertainty assigned by TRC = 0.0001 bar; TRC |
Ptriple | 0.6166 | bar | N/A | Calado, Rebelo, et al., 1986 | Uncertainty assigned by TRC = 0.00007 bar; TRC |
Ptriple | 0.8165 | bar | N/A | Ziegler, Mullins, et al., 1966 | Uncertainty assigned by TRC = 0.0019 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 289.74 | K | N/A | Theeuwes and Bearman, 1970 | Uncertainty assigned by TRC = 0.02 K; PVT, values chosen concordant with vapour pressures measured up to 284 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 8.371 | mol/l | N/A | Theeuwes and Bearman, 1970 | Uncertainty assigned by TRC = 0.00830 mol/l; PVT, values chosen concordant with vapour pressures measured up to 284 K; TRC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
161.43 to 162.63 | 2.83881 | 326.595 | -49.796 | Chen, Lim, et al., 1975 | Coefficents calculated by NIST from author's data. |
161.70 to 184.70 | 3.80675 | 577.661 | -13.0 | Michels and Wassenaar, 1950 | Coefficents calculated by NIST from author's data. |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
MS - José A. Martinho Simões
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: (Xe+ • Xe) + Xe = (Xe+ • 2Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28. | kJ/mol | DT | Helm, 1976 | gas phase; corrected for ln T by Keesee and Castleman, 1986; M |
ΔrH° | 28.2 | kJ/mol | DT | Helm, 1976 | gas phase; corrected for ln T by Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 78.2 | J/mol*K | DT | Helm, 1976 | gas phase; corrected for ln T by Keesee and Castleman, 1986; M |
ΔrS° | 78.2 | J/mol*K | DT | Helm, 1976 | gas phase; corrected for ln T by Keesee and Castleman, 1986; M |
By formula: Cl- + Xe = (Cl- • Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.6 ± 1.3 | kJ/mol | TDAs | Wada, Kikkawa, et al., 2007 | gas phase; B |
ΔrH° | 13.0 | kJ/mol | Mobl | Gatland, 1984 | gas phase; B,M |
ΔrH° | 13.0 | kJ/mol | Mobl | Thackston, Eisele, et al., 1980 | gas phase; B,M |
ΔrH° | <13.4 | kJ/mol | Mobl | De Vreugd, Wijnaendts van Resandt, et al., 1979 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -6.1 ± 1.3 | kJ/mol | TDAs | Wada, Kikkawa, et al., 2007 | gas phase; B |
By formula: Br- + Xe = (Br- • Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.1 ± 1.3 | kJ/mol | TDAs | Wada, Kikkawa, et al., 2007 | gas phase; B |
ΔrH° | 12.1 ± 0.42 | kJ/mol | LPES | Yourshaw, Lenzer, et al., 1998 | gas phase; Given: 0.12692(.0005) eV; B |
ΔrH° | 14.2 | kJ/mol | Mobl | Gatland, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -4.9 ± 1.3 | kJ/mol | TDAs | Wada, Kikkawa, et al., 2007 | gas phase; B |
By formula: Cs+ + Xe = (Cs+ • Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.5 | kJ/mol | IMob | Gatland, 1984, 2 | gas phase; M |
ΔrH° | 11.5 | kJ/mol | SCATTERING | Gislason, 1984 | gas phase; M |
ΔrH° | 11.0 | kJ/mol | IMob | Viehland, 1984 | gas phase; M |
ΔrH° | 10.2 | kJ/mol | IMob | Mason and Sharp, 1958 | gas phase; M |
ΔrH° | 14.9 | kJ/mol | IMob | Takebe, 1983 | gas phase; values from this source are too high; M |
By formula: CH3+ + Xe = (CH3+ • Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 213. | kJ/mol | PHPMS | McMahon, Heinis, et al., 1988 | gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 202. kJ/mol; Foster, Williamson, et al., 1974; M |
ΔrH° | 231. ± 10. | kJ/mol | ICR | Hovey and McMahon, 1986 | gas phase; switching reaction(CH3+)CH3F, Entropy change calculated or estimated; M |
By formula: F- + Xe = (F- • Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.4 ± 1.3 | kJ/mol | TDAs | Wada, Kikkawa, et al., 2007 | gas phase; B |
ΔrH° | 27.2 ± 3.8 | kJ/mol | Mobl | De Vreugd, Wijnaendts van Resandt, et al., 1979 | gas phase; B |
ΔrH° | 27. | kJ/mol | SCATTERING | De Vrengd, Wijnaendts van Resandt, et al., 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6.4 ± 1.3 | kJ/mol | TDAs | Wada, Kikkawa, et al., 2007 | gas phase; B |
+ = IXe-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.69 | kJ/mol | N/A | Lenzer, Furlanetto, et al., 1998 | gas phase; B |
ΔrH° | 11.7 | kJ/mol | TDAs | Wada, Kikkawa, et al., 2007 | gas phase; Entropy estimated; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -8.24 | kJ/mol | TDAs | Wada, Kikkawa, et al., 2007 | gas phase; Entropy estimated; B |
By formula: Xe+ + Xe = (Xe+ • Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 99.6 | kJ/mol | PI | Ng, Trevor, et al., 1976 | gas phase; M |
ΔrH° | 95.4 | kJ/mol | SCATTERING | Mittman and Weise, 1974 | gas phase; M |
ΔrH° | 93.7 | kJ/mol | SCATTERING | Lorentz, Olson, et al., 1973 | gas phase; M |
ΔrH° | 95.4 | kJ/mol | PI | Samson, 1966 | gas phase; M |
By formula: K+ + Xe = (K+ • Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.0 | kJ/mol | IMob | Gatland, 1984, 2 | gas phase; M |
ΔrH° | 15.8 | kJ/mol | SCATTERING | Gislason, 1984 | gas phase; M |
ΔrH° | 20.3 | kJ/mol | IMob | Viehland, 1984 | gas phase; M |
ΔrH° | 22.3 | kJ/mol | IMob | Takebe, 1983 | gas phase; M |
C5O5WXe (solution) = C5O5W (solution) + (solution)
By formula: C5O5WXe (solution) = C5O5W (solution) + Xe (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35.1 ± 0.8 | kJ/mol | KinS | Weiller, 1992 | solvent: Liquid Xenon; Temperature range: 173-198 K; MS |
C5MoO5Xe (g) = C5MoO5 (g) + (g)
By formula: C5MoO5Xe (g) = C5MoO5 (g) + Xe (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33.5 ± 4.2 | kJ/mol | KinG | Wells and Weitz, 1992 | The reaction enthalpy relies on 31.0 ± 4.2 kJ/mol for the activation energy and on the assumption of a negligible barrier for product recombination Wells and Weitz, 1992; MS |
By formula: C5O5WXe (g) = C5O5W (g) + Xe (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 34.3 ± 4.2 | kJ/mol | KinG | Wells and Weitz, 1992 | The reaction enthalpy relies on 31.8 ± 4.2 kJ/mol for the activation energy and on the assumption of a negligible barrier for product recombination Wells and Weitz, 1992; MS |
C5CrO5Xe (g) = C5CrO5 (g) + (g)
By formula: C5CrO5Xe (g) = C5CrO5 (g) + Xe (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 37.7 ± 3.8 | kJ/mol | KinG | Wells and Weitz, 1992 | The reaction enthalpy relies on 35.1 ± 3.8 kJ/mol for the activation energy and assumes a negligible barrier for product recombination Wells and Weitz, 1992; MS |
By formula: Li+ + Xe = (Li+ • Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.5 | kJ/mol | SCATTERING | Gislason, 1984 | gas phase; M |
ΔrH° | 52.7 | kJ/mol | IMob | Viehland, 1984 | gas phase; M |
ΔrH° | 87.0 | kJ/mol | IMob | Takebe, 1983 | gas phase; M |
By formula: Na+ + Xe = (Na+ • Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25.0 | kJ/mol | SCATTERING | Gislason, 1984 | gas phase; M |
ΔrH° | 24.9 | kJ/mol | IMob | Viehland, 1984 | gas phase; M |
ΔrH° | 39.8 | kJ/mol | IMob | Takebe, 1983 | gas phase; M |
By formula: Rb+ + Xe = (Rb+ • Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.9 | kJ/mol | IMob | Gatland, 1984, 2 | gas phase; M |
ΔrH° | 17.8 | kJ/mol | IMob | Viehland, 1984 | gas phase; M |
ΔrH° | 15.1 | kJ/mol | IMob | Takebe, 1983 | gas phase; M |
By formula: (Xe+ • 2Xe) + Xe = (Xe+ • 3Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25.2 ± 0.63 | kJ/mol | PHPMS | Hiraoka and Mori, 1990 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 63.2 | J/mol*K | PHPMS | Hiraoka and Mori, 1990 | gas phase; M |
By formula: (Xe+ • 3Xe) + Xe = (Xe+ • 4Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.0 ± 0.63 | kJ/mol | PHPMS | Hiraoka and Mori, 1990 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 54.8 | J/mol*K | PHPMS | Hiraoka and Mori, 1990 | gas phase; M |
By formula: ClXe- + 2Xe = ClXe2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.5 ± 1.7 | kJ/mol | TDAs | Wada, Kikkawa, et al., 2007 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -9.5 ± 1.7 | kJ/mol | TDAs | Wada, Kikkawa, et al., 2007 | gas phase; B |
By formula: FXe2- + 3Xe = FXe3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.9 ± 1.7 | kJ/mol | TDAs | Wada, Kikkawa, et al., 2007 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -2.8 ± 1.7 | kJ/mol | TDAs | Wada, Kikkawa, et al., 2007 | gas phase; B |
By formula: FXe- + 2Xe = FXe2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.8 ± 1.3 | kJ/mol | TDAs | Wada, Kikkawa, et al., 2007 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 0.5 ± 1.3 | kJ/mol | TDAs | Wada, Kikkawa, et al., 2007 | gas phase; B |
By formula: NO- + Xe = (NO- • Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.3 ± 3.8 | kJ/mol | N/A | Hendricks, de Clercq, et al., 2002 | gas phase; B |
ΔrH° | 17.2 ± 2.5 | kJ/mol | N/A | Bowen and Eaton, 1988 | gas phase; B |
By formula: IXe9- + 10Xe = IXe10-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 5.0 ± 3.8 | kJ/mol | N/A | Becker, Markovich, et al., 1997 | gas phase; Stated electron affinity is the Vertical Detachment Energy; B |
By formula: IXe10- + 11Xe = IXe11-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3.8 ± 3.8 | kJ/mol | N/A | Becker, Markovich, et al., 1997 | gas phase; Stated electron affinity is the Vertical Detachment Energy; B |
By formula: IXe11- + 12Xe = IXe12-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3.8 ± 3.8 | kJ/mol | N/A | Becker, Markovich, et al., 1997 | gas phase; Stated electron affinity is the Vertical Detachment Energy; B |
By formula: IXe- + 2Xe = IXe2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.8 ± 2.1 | kJ/mol | N/A | Becker, Markovich, et al., 1997 | gas phase; Stated electron affinity is the Vertical Detachment Energy; B |
By formula: IXe2- + 3Xe = IXe3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.7 ± 3.8 | kJ/mol | N/A | Becker, Markovich, et al., 1997 | gas phase; Stated electron affinity is the Vertical Detachment Energy; B |
By formula: IXe3- + 4Xe = IXe4-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 5.9 ± 3.8 | kJ/mol | N/A | Becker, Markovich, et al., 1997 | gas phase; Stated electron affinity is the Vertical Detachment Energy; B |
By formula: IXe4- + 5Xe = IXe5-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 5.9 ± 3.8 | kJ/mol | N/A | Becker, Markovich, et al., 1997 | gas phase; Stated electron affinity is the Vertical Detachment Energy; B |
By formula: IXe5- + 6Xe = IXe6-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 5.0 ± 3.8 | kJ/mol | N/A | Becker, Markovich, et al., 1997 | gas phase; Stated electron affinity is the Vertical Detachment Energy; B |
By formula: IXe6- + 7Xe = IXe7-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 5.0 ± 3.8 | kJ/mol | N/A | Becker, Markovich, et al., 1997 | gas phase; Stated electron affinity is the Vertical Detachment Energy; B |
By formula: IXe7- + 8Xe = IXe8-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 5.0 ± 3.8 | kJ/mol | N/A | Becker, Markovich, et al., 1997 | gas phase; Stated electron affinity is the Vertical Detachment Energy; B |
By formula: IXe8- + 9Xe = IXe9-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3.8 ± 3.8 | kJ/mol | N/A | Becker, Markovich, et al., 1997 | gas phase; Stated electron affinity is the Vertical Detachment Energy; B |
By formula: V+ + Xe = (V+ • Xe)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
33. (+5.9,-0.) | CID | Sievers and Armentrout, 1995 | gas phase; guided ion beam CID; M |
By formula: Fe+ + Xe = (Fe+ • Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.8 ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: Mg+ + Xe = (Mg+ • Xe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31. ± 12. | kJ/mol | CIDT | Andersen, Muntean, et al., 2000 | RCD |
By formula: NOXe- + 2Xe = NOXe2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.3 | kJ/mol | N/A | Hendricks, de Clercq, et al., 2002 | gas phase; B |
By formula: NOXe2- + 3Xe = NOXe3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.6 | kJ/mol | N/A | Hendricks, de Clercq, et al., 2002 | gas phase; B |
By formula: NOXe3- + 4Xe = NOXe4-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1.3 | kJ/mol | N/A | Hendricks, de Clercq, et al., 2002 | gas phase; B |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference |
---|---|---|---|
0.0043 | 2200. | L | N/A |
0.0043 | 1900. | M | N/A |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | ATLANTIC REFINING CO., PHILADELPHIA, PENNSYLVANIA |
NIST MS number | 34169 |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A.,
CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Ziegler, Mullins, et al., 1966
Ziegler, W.T.; Mullins, J.C.; Berquist, A.R.,
Calculation of the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids below One Atmosphere Pressure. VIII. Xenon, Ga. Inst. Technol., Eng. Exp. Stn., Proj. A-764, Tech. Rep. No. 3, 1966. [all data]
Kemp, Kemp, et al., 1985
Kemp, R.C.; Kemp, W.R.G.; Smart, P.W.,
The triple point of xenon as a possible defining point on an international temperature scale,
Metrologia, 1985, 21, 43. [all data]
Lahr and Eversole, 1962
Lahr, P.H.; Eversole, W.G.,
Compression Isotherms of Argon, Krypton, and Xenon Through the Freezing Zone,
J. Chem. Eng. Data, 1962, 7, 42-47. [all data]
Clusius and Weigand, 1940
Clusius, K.; Weigand, K.,
Melting Curves of the Gases A, Kr, Xe, CH4, CH3D, CD4, C2H4, C2H6, COS, and PH3 to 200 Atmospheres Pressure. The Chane of Volume on Melting,
Z. Phys. Chem., Abt. B, 1940, 46, 1-37. [all data]
Fonseca and Lobo, 1989
Fonseca, I.M.A.; Lobo, L.Q.,
Thermodynamics of liquid mixtures of xenon and methyl fluoride,
Fluid Phase Equilib., 1989, 47, 249. [all data]
Calado, Rebelo, et al., 1986
Calado, J.C.G.; Rebelo, L.P.N.; Streett, W.B.; Zollweg, J.A.,
Thermodynamics of liquid (dimethylether + xenon),
J. Chem. Thermodyn., 1986, 18, 931. [all data]
Theeuwes and Bearman, 1970
Theeuwes, F.; Bearman, R.J.,
The p,V,T behavior of dense fluids V. The vapor pressure and saturated liquid density of xenon,
J. Chem. Thermodyn., 1970, 2, 507-12. [all data]
Chen, Lim, et al., 1975
Chen, H.H.; Lim, C.C.; Aziz, R.A.,
The Enthalpy of Vaporization and Internal Energy of Liquid Argon, Krypton, and Xenon Determined from Vapor Pressures,
J. Chem. Thermodyn., 1975, 7, 2, 191-199, https://doi.org/10.1016/0021-9614(75)90268-2
. [all data]
Michels and Wassenaar, 1950
Michels, A.; Wassenaar, T.,
Vapour Pressure of Liquid Xenon,
Physica (Amsterdam), 1950, 16, 3, 253-256, https://doi.org/10.1016/0031-8914(50)90023-1
. [all data]
Helm, 1976
Helm, H.,
Formation of Xe3+ Ions in Xenon at Temperatures Between 210 and 293 K,
Phys. Rev. A, 1976, 14, 2, 680, https://doi.org/10.1103/PhysRevA.14.680
. [all data]
Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr.,
Thermochemical data on Ggs-phase ion-molecule association and clustering reactions,
J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]
Wada, Kikkawa, et al., 2007
Wada, A.; Kikkawa, A.; Sugiyama, T.; Hiraoka, K.,
Thermochemical Stabilities of the Gas-phase Cluster Ions of Halide Ions with Rare Gas Atoms,
Int. J. Mass Spectrom.., 2007, 267, 1-3, 284-287, https://doi.org/10.1016/j.ijms.2007.02.053
. [all data]
Gatland, 1984
Gatland, I.R.,
Determination of Ion-Atom Potentials from Mobility Experiments.
in Swarms of Ions and Electrons In Gases, W. Lindinger, Ed., Springer-Verlag, NY,, 1984, 44. [all data]
Thackston, Eisele, et al., 1980
Thackston, M.G.; Eisele, F.L.; Pope, W.M.; Ellis, H.W.; McDaniel, E.W.; Gatland, I.R.,
Mobility of Cl- ions in Xe gas and the Cl--Xe interaction potential,
J. Chem. Phys., 1980, 73, 3183. [all data]
De Vreugd, Wijnaendts van Resandt, et al., 1979
De Vreugd, C.; Wijnaendts van Resandt, R.W.; Los, J.,
The Well Depths of XeF- and XeCl- from Differential Scattering Measurements,
Chem. Phys. Lett., 1979, 65, 1, 93, https://doi.org/10.1016/0009-2614(79)80134-7
. [all data]
Yourshaw, Lenzer, et al., 1998
Yourshaw, I.; Lenzer, T.; Reiser, G.; Neumark, D.M.,
Zero electron kinetic energy spectroscopy of the KrBr-, XeBr-, and KrCl- anions,
J. Chem. Phys., 1998, 109, 13, 5247-5256, https://doi.org/10.1063/1.477141
. [all data]
Gatland, 1984, 2
Gatland, I.R.,
Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]
Gislason, 1984
Gislason, E.A.,
Quoted in I. R. Gatland in Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]
Viehland, 1984
Viehland, L.A.,
Interaction Potentials for Li+ - Rare - Gas Systems,
Chem. Phys., 1984, 78, 2, 279, https://doi.org/10.1016/0301-0104(83)85114-3
. [all data]
Mason and Sharp, 1958
Mason, E.A.; Sharp, H.W.,
Mobility of gaseous lons in weak electric fields,
Ann. Phys., 1958, 4, 3, 233, https://doi.org/10.1016/0003-4916(58)90049-6
. [all data]
Takebe, 1983
Takebe, M.,
The Generalized Mobility Curve for Alkali Ions in Rare Gases: Clustering Reactions and Mobility Curves,
J. Chem. Phys., 1983, 78, 12, 7223, https://doi.org/10.1063/1.444763
. [all data]
McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P.,
Methyl Cation Affinities,
J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002
. [all data]
Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L.,
Photoionization mass spectrometry of trans-azomethane,
Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]
Hovey and McMahon, 1986
Hovey, J.K.; McMahon, T.B.,
C-Xe Bond strength in the methylxenonium cation determined from ion cyclotron resonance methyl cation exchange equilibria,
J. Am. Chem. Soc., 1986, 108, 528. [all data]
De Vrengd, Wijnaendts van Resandt, et al., 1979
De Vrengd, C.; Wijnaendts van Resandt, R.W.; Los, J.,
The well depths of XeF- and XeCl- from differential scattering measurements,
Chem. Phys. Lett., 1979, 65, 93. [all data]
Lenzer, Furlanetto, et al., 1998
Lenzer, T.; Furlanetto, M.R.; Asmis, K.R.; Neumark, D.M.,
Zero electron kinetic energy and photoelectron spectroscopy of the XeI- anion,
J. Chem. Phys., 1998, 109, 24, 10754-10766, https://doi.org/10.1063/1.477774
. [all data]
Ng, Trevor, et al., 1976
Ng, C.Y.; Trevor, D.J.; Mahan, B.H.; Lee, Y.T.,
Photoionization Study of the Xe2 van der Waals Molecule,
J. Chem. Phys., 1976, 65, 10, 4327, https://doi.org/10.1063/1.432849
. [all data]
Mittman and Weise, 1974
Mittman, H.U.; Weise, H.P.,
Scattering of Ions V. Elastic Scattering of the Symmetric Rare Gas Ion - Rare Gas Atom Systems,
Z. Naturforsch., 1974, A29, 400. [all data]
Lorentz, Olson, et al., 1973
Lorentz, D.C.; Olson, R.E.; Conklin, G.M.,
Rainbow Scattering for Ar+ + Ar and Xe+ + Xe,
Chem. Phys. Lett., 1973, 20, 6, 589, https://doi.org/10.1016/0009-2614(73)80508-1
. [all data]
Samson, 1966
Samson, J.A.R.,
Ionization Potential of Molecular Xenon and Krypton,
J. Opt. Soc. Am., 1966, 56, 8, 1140, https://doi.org/10.1364/JOSA.56.001140
. [all data]
Weiller, 1992
Weiller, B.H.,
J. Am. Chem. Soc., 1992, 114, 10910. [all data]
Wells and Weitz, 1992
Wells, J.R.; Weitz, E.,
J. Am. Chem. Soc., 1992, 114, 2783. [all data]
Hiraoka and Mori, 1990
Hiraoka, K.; Mori, T.,
Stability of Rare - Gas Cluster Ions,
J. Chem. Phys., 1990, 92, 7, 4408, https://doi.org/10.1063/1.457751
. [all data]
Hendricks, de Clercq, et al., 2002
Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S.,
Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2),
J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444
. [all data]
Bowen and Eaton, 1988
Bowen, K.H.; Eaton, J.G.,
Photodetachment Spectroscopy of Negative Cluster Ions,
in The Structure of Small Molecules and Ions, Ed. R. Naaman, Z. Vager, Plenum NY, 1988, 1988, p.147-169. [all data]
Becker, Markovich, et al., 1997
Becker, I.; Markovich, G.; Chesnovsky, O.,
Bound Delocalized Excited States in I-Xen Clusters.,
Phys. Rev. Lett., 1997, 79, 18, 3391, https://doi.org/10.1103/PhysRevLett.79.3391
. [all data]
Sievers and Armentrout, 1995
Sievers, M.R.; Armentrout, P.B.,
Collision-Induced Dissociation Studies of V(CO)x+, x = 1-7: Sequential Bond Energies and the Heat of Formation of V(CO)6,
J. Phys. Chem., 1995, 99, 20, 8135, https://doi.org/10.1021/j100020a041
. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Andersen, Muntean, et al., 2000
Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P.B.,
Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6,
J. Phys. Chem. A, 2000, 104, 4, 692, https://doi.org/10.1021/jp993031t
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), References
- Symbols used in this document:
Ptriple Triple point pressure S°gas,1 bar Entropy of gas at standard conditions (1 bar) T Temperature Tboil Boiling point Tc Critical temperature Ttriple Triple point temperature d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.