Krypton

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Cesium ion (1+) + Krypton = (Cesium ion (1+) • Krypton)

By formula: Cs+ + Kr = (Cs+ • Kr)

Quantity Value Units Method Reference Comment
Δr2.79kcal/molIMobGatland, 1984gas phase; M
Δr2.33kcal/molSCATTERINGGislason, 1984gas phase; M
Δr2.72kcal/molIMobViehland, 1984gas phase; M
Δr3.1kcal/molIMobTakebe, 1983gas phase; M
Δr3.07kcal/molIMobTakebe, 1983gas phase; values form this reference are too high; M

Methyl cation + Krypton = (Methyl cation • Krypton)

By formula: CH3+ + Kr = (CH3+ • Kr)

Quantity Value Units Method Reference Comment
Δr44.0kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M
Δr47.7 ± 2.5kcal/molICRHovey and McMahon, 1987gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated; M

Sodium ion (1+) + Krypton = (Sodium ion (1+) • Krypton)

By formula: Na+ + Kr = (Na+ • Kr)

Quantity Value Units Method Reference Comment
Δr4.84kcal/molSCATTERINGGislason, 1984gas phase; M
Δr5.08kcal/molIMobViehland, 1984gas phase; M
Δr5.8kcal/molDTMcKnight and Sawina, 1973gas phase; M
Δr6.57kcal/molIMobTakebe, 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr18.5cal/mol*KDTMcKnight and Sawina, 1973gas phase; M

Chlorine anion + Krypton = (Chlorine anion • Krypton)

By formula: Cl- + Kr = (Cl- • Kr)

Quantity Value Units Method Reference Comment
Δr2.20 ± 0.10kcal/molLPESYourshaw, Lenzer, et al., 1998gas phase; Given: 0.0957(0.001) eV; B
Δr2.80 ± 0.40kcal/molTDAsWada, Kikkawa, et al., 2007gas phase; B
Quantity Value Units Method Reference Comment
Δr-2.86 ± 0.40kcal/molTDAsWada, Kikkawa, et al., 2007gas phase; B

Bromine anion + Krypton = (Bromine anion • Krypton)

By formula: Br- + Kr = (Br- • Kr)

Quantity Value Units Method Reference Comment
Δr1.10 ± 0.10kcal/molLPESYourshaw, Lenzer, et al., 1998gas phase; given: 0.0795(.001) eV; B
Δr<2.70kcal/molTDAsWada, Kikkawa, et al., 2007gas phase; B
Δr2.00kcal/molMoblGatland, 1984, 2gas phase; B,M

Kr+ + Krypton = (Kr+ • Krypton)

By formula: Kr+ + Kr = (Kr+ • Kr)

Quantity Value Units Method Reference Comment
Δr26.5kcal/molPIDehmer and Pratt, 1982gas phase; M
Δr26.3kcal/molPDissAbouaf, Huber, et al., 1978gas phase; M
Δr26.5kcal/molPINg, Trevor, et al., 1977gas phase; M
Δr27.9kcal/molSCATTERINGMittman and Weise, 1974gas phase; M

Potassium ion (1+) + Krypton = (Potassium ion (1+) • Krypton)

By formula: K+ + Kr = (K+ • Kr)

Quantity Value Units Method Reference Comment
Δr3.21kcal/molIMobGatland, 1984gas phase; M
Δr2.89kcal/molSCATTERINGGislason, 1984gas phase; M
Δr2.94kcal/molIMobViehland, 1984gas phase; M
Δr3.71kcal/molIMobTakebe, 1983gas phase; M

Copper ion (1+) + Krypton = (Copper ion (1+) • Krypton)

By formula: Cu+ + Kr = (Cu+ • Kr)

Quantity Value Units Method Reference Comment
Δr5.8kcal/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M
Quantity Value Units Method Reference Comment
Δr18.8cal/mol*KHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M

Lithium ion (1+) + Krypton = (Lithium ion (1+) • Krypton)

By formula: Li+ + Kr = (Li+ • Kr)

Quantity Value Units Method Reference Comment
Δr10.6kcal/molSCATTERINGGislason, 1984gas phase; M
Δr9.2kcal/molIMobViehland, 1984gas phase; M
Δr16.4kcal/molIMobTakebe, 1983gas phase; M

Rubidium ion (1+) + Krypton = (Rubidium ion (1+) • Krypton)

By formula: Rb+ + Kr = (Rb+ • Kr)

Quantity Value Units Method Reference Comment
Δr2.64kcal/molIMobGatland, 1984gas phase; M
Δr2.67kcal/molIMobViehland, 1984gas phase; M
Δr3.34kcal/molIMobTakebe, 1983gas phase; M

(Kr+ • 2Krypton) + Krypton = (Kr+ • 3Krypton)

By formula: (Kr+ • 2Kr) + Kr = (Kr+ • 3Kr)

Quantity Value Units Method Reference Comment
Δr5.57 ± 0.15kcal/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr17.8cal/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

(Kr+ • 3Krypton) + Krypton = (Kr+ • 4Krypton)

By formula: (Kr+ • 3Kr) + Kr = (Kr+ • 4Kr)

Quantity Value Units Method Reference Comment
Δr2.16 ± 0.15kcal/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr14.9cal/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

(Kr+ • 4Krypton) + Krypton = (Kr+ • 5Krypton)

By formula: (Kr+ • 4Kr) + Kr = (Kr+ • 5Kr)

Quantity Value Units Method Reference Comment
Δr2.05 ± 0.15kcal/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr15.7cal/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

(Kr+ • 5Krypton) + Krypton = (Kr+ • 6Krypton)

By formula: (Kr+ • 5Kr) + Kr = (Kr+ • 6Kr)

Quantity Value Units Method Reference Comment
Δr2.04 ± 0.15kcal/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr15.7cal/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

Nitric oxide anion + Krypton = (Nitric oxide anion • Krypton)

By formula: NO- + Kr = (NO- • Kr)

Quantity Value Units Method Reference Comment
Δr2.30 ± 0.90kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr2.50 ± 0.40kcal/molN/ABowen and Eaton, 1988gas phase; B

Xe+ + Krypton = (Xe+ • Krypton)

By formula: Xe+ + Kr = (Xe+ • Kr)

Quantity Value Units Method Reference Comment
Δr8.9kcal/molPIDehmer and Pratt, 1982gas phase; M
Δr8.5kcal/molPINg, Tiedemann, et al., 1977gas phase; M

H2O+ + Krypton = (H2O+ • Krypton)

By formula: H2O+ + Kr = (H2O+ • Kr)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
7.6 (+2.3,-0.) PD/KERDKim, Kuo, et al., 1990gas phase; M

O2S+ + Krypton = (O2S+ • Krypton)

By formula: O2S+ + Kr = (O2S+ • Kr)

Quantity Value Units Method Reference Comment
Δr7.kcal/molPDissKim, Jarrold, et al., 1986gas phase; ΔrH<; M

Iodide + Krypton = (Iodide • Krypton)

By formula: I- + Kr = (I- • Kr)

Quantity Value Units Method Reference Comment
Δr1.00kcal/molTherZhao, Yourshaw, et al., 1994gas phase; B

Oxygen cation + Krypton = (Oxygen cation • Krypton)

By formula: O2+ + Kr = (O2+ • Kr)

Quantity Value Units Method Reference Comment
Δr7.6kcal/molPDissJarrold, Misev, et al., 1984gas phase; M

CO2+ + Krypton = (CO2+ • Krypton)

By formula: CO2+ + Kr = (CO2+ • Kr)

Quantity Value Units Method Reference Comment
Δr17.1kcal/molPIJarrold, Illies, et al., 1985gas phase; M

Iron ion (1+) + Krypton = (Iron ion (1+) • Krypton)

By formula: Fe+ + Kr = (Fe+ • Kr)

Quantity Value Units Method Reference Comment
Δr7.2 ± 1.7kcal/molCIDTRodgers and Armentrout, 2000RCD

Henry's Law data

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
0.00251900.LN/A
0.00241500.MN/A

References

Go To: Top, Reaction thermochemistry data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Gatland, 1984
Gatland, I.R., Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Gislason, 1984
Gislason, E.A., Quoted in I. R. Gatland in Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Viehland, 1984
Viehland, L.A., Interaction Potentials for Li+ - Rare - Gas Systems, Chem. Phys., 1984, 78, 2, 279, https://doi.org/10.1016/0301-0104(83)85114-3 . [all data]

Takebe, 1983
Takebe, M., The Generalized Mobility Curve for Alkali Ions in Rare Gases: Clustering Reactions and Mobility Curves, J. Chem. Phys., 1983, 78, 12, 7223, https://doi.org/10.1063/1.444763 . [all data]

McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P., Methyl Cation Affinities, J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002 . [all data]

Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L., Photoionization mass spectrometry of trans-azomethane, Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]

Hovey and McMahon, 1987
Hovey, J.K.; McMahon, T.B., Bond Strength in the Methylkryptonium Ion Determined from Ion Cyclotron Resonance Methyl Cation Exchange Equilibria, J. Phys. Chem., 1987, 91, 17, 4560, https://doi.org/10.1021/j100301a028 . [all data]

McKnight and Sawina, 1973
McKnight, L.G.; Sawina, J.M., Equilibrium Constants and Binding Energies of Alkali Metal Ions with Inert Gases, Bull. Am. Phys. Soc., 1973, 18, 804. [all data]

Yourshaw, Lenzer, et al., 1998
Yourshaw, I.; Lenzer, T.; Reiser, G.; Neumark, D.M., Zero electron kinetic energy spectroscopy of the KrBr-, XeBr-, and KrCl- anions, J. Chem. Phys., 1998, 109, 13, 5247-5256, https://doi.org/10.1063/1.477141 . [all data]

Wada, Kikkawa, et al., 2007
Wada, A.; Kikkawa, A.; Sugiyama, T.; Hiraoka, K., Thermochemical Stabilities of the Gas-phase Cluster Ions of Halide Ions with Rare Gas Atoms, Int. J. Mass Spectrom.., 2007, 267, 1-3, 284-287, https://doi.org/10.1016/j.ijms.2007.02.053 . [all data]

Gatland, 1984, 2
Gatland, I.R., Determination of Ion-Atom Potentials from Mobility Experiments. in Swarms of Ions and Electrons In Gases, W. Lindinger, Ed., Springer-Verlag, NY,, 1984, 44. [all data]

Dehmer and Pratt, 1982
Dehmer, P.M.; Pratt, S.T., Photoionization of ArKr, ArXe, and KrXe and bond dissociation energies of the rare gas dimer ions, J. Chem. Phys., 1982, 77, 4804. [all data]

Abouaf, Huber, et al., 1978
Abouaf, R.; Huber, B.A.; Cosby, P.C.; Saxon, R.P.; Moseley, J.T., Photofragment Spectroscopy and Potential Curves of Kr2+, J. Chem. Phys., 1978, 68, 5, 2406, https://doi.org/10.1063/1.436011 . [all data]

Ng, Trevor, et al., 1977
Ng, C.Y.; Trevor, D.J.; Mahan, B.H.; Lee, Y.T., Photoionization Studies of the Kr2 and Ar2 van der Vaals Molecules, J. Chem. Phys., 1977, 66, 2, 446, https://doi.org/10.1063/1.433989 . [all data]

Mittman and Weise, 1974
Mittman, H.U.; Weise, H.P., Scattering of Ions V. Elastic Scattering of the Symmetric Rare Gas Ion - Rare Gas Atom Systems, Z. Naturforsch., 1974, A29, 400. [all data]

El-Shall, Schriver, et al., 1989
El-Shall, M.S.; Schriver, K.E.; Whetten, R.L.; Meot-Ner (Mautner), M., Ion/Molecule Clustering Thermochemistry by Laser Ionization High - Pressure Mass Spectrometry, J. Phys. Chem., 1989, 93, 24, 7969, https://doi.org/10.1021/j100361a002 . [all data]

Hiraoka and Mori, 1990
Hiraoka, K.; Mori, T., Stability of Rare - Gas Cluster Ions, J. Chem. Phys., 1990, 92, 7, 4408, https://doi.org/10.1063/1.457751 . [all data]

Hendricks, de Clercq, et al., 2002
Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S., Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2), J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444 . [all data]

Bowen and Eaton, 1988
Bowen, K.H.; Eaton, J.G., Photodetachment Spectroscopy of Negative Cluster Ions, in The Structure of Small Molecules and Ions, Ed. R. Naaman, Z. Vager, Plenum NY, 1988, 1988, p.147-169. [all data]

Ng, Tiedemann, et al., 1977
Ng, C.Y.; Tiedemann, P.W.; Mahan, B.H.; Lee, Y.T., Photoionization Studies of the Diatomic Internuclear Rare Gas Molecules XeKr, XeAr, and KrAr, J. Chem. Phys., 1977, 66, 12, 5737, https://doi.org/10.1063/1.433848 . [all data]

Kim, Kuo, et al., 1990
Kim, H.S.; Kuo, C.H.; Bowers, M.T., Photodissociation Dynamics of Water Containing Clusters. I. Kr.H2O+, J. Chem. Phys., 1990, 93, 8, 5594, https://doi.org/10.1063/1.459630 . [all data]

Kim, Jarrold, et al., 1986
Kim, H.S.; Jarrold, M.F.; Bowers, M.T., Photodissociation of Weakly Bound Ion-Molecule Clusters: Kr.SO2+, J. Chem. Phys., 1986, 90, 16, 3584, https://doi.org/10.1021/j100407a024 . [all data]

Zhao, Yourshaw, et al., 1994
Zhao, Y.X.; Yourshaw, I.; Reiser, G.; Arnold, C.C.; Neumark, D.M., Study of the ArBr(-), ArI(-), and KrI(-) anions and the corresponding neutral van der Waals complexes by anion zero electron kinetic energy, J. Chem. Phys., 1994, 101, 8, 6538, https://doi.org/10.1063/1.468500 . [all data]

Jarrold, Misev, et al., 1984
Jarrold, M.F.; Misev, L.; Bowers, M.T., Charge Transfer Half - Collisions: Photodissociation of the Kr.O2+ cluster Ion with Resolution of the Product Vibrational States, J. Chem. Phys., 1984, 81, 10, 4369, https://doi.org/10.1063/1.447448 . [all data]

Jarrold, Illies, et al., 1985
Jarrold, M.F.; Illies, A.J.; Wagner-Redeker, W.; Bowers, M.T., Photodissociation of Weakly Bound Ion - Molecule Clusters: The Kr.CO2+ Cluster, J. Phys. Chem., 1985, 89, 15, 3269, https://doi.org/10.1021/j100261a020 . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]


Notes

Go To: Top, Reaction thermochemistry data, Henry's Law data, References