1-Pentanol
- Formula: C5H12O
- Molecular weight: 88.1482
- IUPAC Standard InChIKey: AMQJEAYHLZJPGS-UHFFFAOYSA-N
- CAS Registry Number: 71-41-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Pentyl alcohol; n-Amyl alcohol; n-Butylcarbinol; n-Pentan-1-ol; n-Pentanol; n-Pentyl alcohol; Amyl alcohol; Amylol; Pentanol; 1-Pentyl alcohol; n-C5H11OH; Pentan-1-ol; Pentanol-1; Pentasol; n-Amylalkohol; Alcool amylique; Amyl alcohol, n-; Amyl alcohol, normal; Primary amyl alcohol; UN 1105; 1-Pentol; Primary-N-amyl alcohol; Butyl carbinol; NSC 5707
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -71. ± 1. | kcal/mol | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 95.91 | cal/mol*K | N/A | Counsell J.F., 1968 | GT |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
40.131 | 403.49 | Stromsoe E., 1970 | Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.42 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Counsell J.F., 1970.; GT |
42.46 ± 0.34 | 418.95 | ||
42.58 ± 0.34 | 420.75 | ||
41.726 | 423.32 | ||
42.94 ± 0.34 | 426.15 | ||
43.44 ± 0.34 | 433.45 | ||
42.861 | 438.26 | ||
44.07 ± 0.34 | 442.85 | ||
44.17 ± 0.34 | 444.35 | ||
44.061 | 453.45 | ||
46.09 ± 0.34 | 472.85 | ||
45.516 | 473.19 | ||
46.73 ± 0.34 | 482.25 | ||
50.03 ± 0.34 | 531.25 | ||
51.57 ± 0.34 | 554.15 | ||
52.91 ± 0.34 | 573.95 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -84.039 ± 0.067 | kcal/mol | Ccb | Mosselman and Dekker, 1975 | ALS |
ΔfH°liquid | -84.3 ± 0.2 | kcal/mol | Ccb | Hayes, 1971 | DRB |
ΔfH°liquid | -84.27 ± 0.17 | kcal/mol | Ccb | Gundry, Harrop, et al., 1969 | ALS |
ΔfH°liquid | -85.55 ± 0.12 | kcal/mol | Ccb | Chao and Rossini, 1965 | see Rossini, 1934; ALS |
ΔfH°liquid | -85.65 ± 0.40 | kcal/mol | Ccb | Green, 1960 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -796.107 ± 0.067 | kcal/mol | Ccb | Mosselman and Dekker, 1975 | Corresponding ΔfHºliquid = -84.039 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -795.87 ± 0.16 | kcal/mol | Ccb | Hayes, 1971 | Corresponding ΔfHºliquid = -84.28 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -795.88 ± 0.15 | kcal/mol | Ccb | Gundry, Harrop, et al., 1969 | Corresponding ΔfHºliquid = -84.266 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -794.61 ± 0.09 | kcal/mol | Ccb | Chao and Rossini, 1965 | see Rossini, 1934; Corresponding ΔfHºliquid = -85.54 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -794.5 | kcal/mol | Ccb | Verkade and Coops, 1927 | Corrected for 298 and 1 atm.; Corresponding ΔfHºliquid = -85.6 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 61.88 | cal/mol*K | N/A | Counsell, Lees, et al., 1968 | DH |
S°liquid | 60.90 | cal/mol*K | N/A | Parks, Huffman, et al., 1933 | Extrapolation below 90 K, 57.66 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
49.582 | 298.15 | Benson and D'Arcy, 1986 | DH |
49.582 | 298.15 | Benson and D'Arcy, 1986, 2 | DH |
49.759 | 298.15 | Tanaka, Toyama, et al., 1986 | DH |
49.947 | 298.15 | Zegers and Somsen, 1984 | DH |
49.57 | 298.15 | D'Aprano, DeLisi, et al., 1983 | Data given at 288 and 298 K.; DH |
49.14 | 293.15 | Arutyunyan, Bagdasaryan, et al., 1981 | T = 293 to 393 K. p = 0.1 MPa. Unsmoothed experimental datum given as 2.332 kJ/kg*K. Cp given from 293.15 to 533.15 K for pressure range 10 to 60 MPa.; DH |
50.74 | 301.26 | Griigo'ev, Yanin, et al., 1979 | T = 301 to 463 K. p = 0.98 bar.; DH |
49.809 | 298.15 | Skold, Suurkuusk, et al., 1976 | DH |
57.50 | 313.2 | Paz Andrade, Paz, et al., 1970 | DH |
49.78 | 298.15 | Counsell, Lees, et al., 1968 | T = 10 to 390 K.; DH |
48.21 | 302.4 | Phillip, 1939 | DH |
49.981 | 298.0 | Parks, Huffman, et al., 1933 | T = 94 to 298 K. Value is unsmoothed experimental datum.; DH |
43.81 | 298. | von Reis, 1881 | T = 298 to 400 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 411. ± 1. | K | AVG | N/A | Average of 54 out of 66 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 194.35 | K | N/A | Timmermans, 1952 | Uncertainty assigned by TRC = 0.3 K; TRC |
Tfus | 194.65 | K | N/A | Tschamler, Richter, et al., 1949 | Uncertainty assigned by TRC = 0.5 K; TRC |
Tfus | 194.65 | K | N/A | Timmermans and Mattaar, 1921 | Uncertainty assigned by TRC = 0.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 195.56 | K | N/A | Counsell, Lees, et al., 1968, 2 | Uncertainty assigned by TRC = 0.02 K; TRC |
Ttriple | 194.2 | K | N/A | Parks, Huffman, et al., 1933, 2 | Uncertainty assigned by TRC = 0.2 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 580. ± 20. | K | AVG | N/A | Average of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 38.4 ± 0.4 | atm | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.326 | l/mol | N/A | Gude and Teja, 1995 | |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 3.06 ± 0.02 | mol/l | N/A | Gude and Teja, 1995 | |
ρc | 3.06 | mol/l | N/A | Teja, Lee, et al., 1989 | TRC |
ρc | 3.10 | mol/l | N/A | Smith, Anselme, et al., 1986 | Uncertainty assigned by TRC = 0.20 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 13.5 ± 0.5 | kcal/mol | AVG | N/A | Average of 14 values; Individual data points |
Reduced pressure boiling point
Tboil (K) | Pressure (atm) | Reference | Comment |
---|---|---|---|
323.2 | 0.017 | Weast and Grasselli, 1989 | BS |
Enthalpy of vaporization
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 421. | 298. to 368. |
---|---|---|
A (kcal/mol) | 16.14 | 14.72 |
α | -0.8195 | -1.2689 |
β | 0.8272 | 1.0462 |
Tc (K) | 588.2 | 551.6 |
Reference | Majer and Svoboda, 1985 | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
437.79 to 513.79 | 3.96812 | 1106.11 | -134.578 | Ambrose, Sprake, et al., 1975 | Coefficents calculated by NIST from author's data. |
347.91 to 429.13 | 4.31847 | 1297.689 | -110.669 | Ambrose and Sprake, 1970 | Coefficents calculated by NIST from author's data. |
307.1 to 411. | 4.67706 | 1492.549 | -91.621 | Kemme and Kreps, 1969 |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
2.5100 | 195.56 | Counsell, Lees, et al., 1968 | DH |
2.512 | 195.6 | van Miltenburg and van den Berg, 2004 | AC |
2.51 | 195.6 | Domalski and Hearing, 1996 | AC |
2.349 | 194.2 | Parks, Huffman, et al., 1933 | DH |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
12.83 | 195.56 | Counsell, Lees, et al., 1968 | DH |
12.10 | 194.2 | Parks, Huffman, et al., 1933 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C5H11O- + =
By formula: C5H11O- + H+ = C5H12O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 374.1 ± 2.1 | kcal/mol | G+TS | Higgins and Bartmess, 1998 | gas phase; B |
ΔrH° | 374.8 ± 2.0 | kcal/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 373.9 ± 2.8 | kcal/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 367.5 ± 2.0 | kcal/mol | IMRE | Higgins and Bartmess, 1998 | gas phase; B |
ΔrG° | 368.2 ± 2.1 | kcal/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 367.3 ± 2.7 | kcal/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
By formula: C3H9Si+ + C5H12O = (C3H9Si+ • C5H12O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.7 | kcal/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 31.4 | cal/mol*K | N/A | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
30.1 | 468. | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
(C5H13O+ • 4) + = (C5H13O+ • 5)
By formula: (C5H13O+ • 4C5H12O) + C5H12O = (C5H13O+ • 5C5H12O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11. | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25. | cal/mol*K | N/A | Meot-Ner (Mautner), 1992 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
5.1 | 227. | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; Entropy change calculated or estimated; M |
(C5H13O+ • ) + = (C5H13O+ • 2)
By formula: (C5H13O+ • C5H12O) + C5H12O = (C5H13O+ • 2C5H12O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22. | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 32. | cal/mol*K | N/A | Meot-Ner (Mautner), 1992 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
10.5 | 346. | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; Entropy change calculated or estimated; M |
(C5H13O+ • 2) + = (C5H13O+ • 3)
By formula: (C5H13O+ • 2C5H12O) + C5H12O = (C5H13O+ • 3C5H12O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.0 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.3 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
(C5H13O+ • 3) + = (C5H13O+ • 4)
By formula: (C5H13O+ • 3C5H12O) + C5H12O = (C5H13O+ • 4C5H12O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.9 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.4 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
By formula: C5H12O = C5H10O + H2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.8 ± 0.38 | kcal/mol | Eqk | Connett, 1970 | liquid phase; ALS |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
81. | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
76. | M | Butler, Ramchandani, et al., 1935 | ||
78. | V | Butler, Ramchandani, et al., 1935 |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | NIST Standard Reference Data Program Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Sadtler Research Labs Under US-EPA Contract |
State | gas |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1998. |
NIST MS number | 291529 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Counsell J.F., 1968
Counsell J.F.,
Thermodynamic properties of organic oxygen compounds. Part XIX. Low-temperature heat capacity and entropy of propan-1-ol, 2-methylpropan-1-ol, and pentan-1-ol,
J. Chem. Soc. A, 1968, 1819-1823. [all data]
Stromsoe E., 1970
Stromsoe E.,
Heat capacity of alcohol vapors at atmospheric pressure,
J. Chem. Eng. Data, 1970, 15, 286-290. [all data]
Counsell J.F., 1970
Counsell J.F.,
Thermodynamic properties of organic oxygen compounds. 24. Vapor heat capacities and enthalpies of vaporization of ethanol, 2-methyl-1-propanol, and 1-pentanol,
J. Chem. Thermodyn., 1970, 2, 367-372. [all data]
Mosselman and Dekker, 1975
Mosselman, C.; Dekker, H.,
Enthalpies of formation of n-alkan-1-ols,
J. Chem. Soc. Faraday Trans. 1, 1975, 417-424. [all data]
Hayes, 1971
Hayes, C.W.,
Bomb calorimetric studies on normal alkan-1-ols, steroregular polymethylmethacrylates, α-olefinic polymers, trioxane and oxygenated polymers,
Diss. Abs., 1971, 31, 5903-5904. [all data]
Gundry, Harrop, et al., 1969
Gundry, H.A.; Harrop, D.; Head, A.J.; Lewis, G.B.,
Thermodynamic properties of organic oxygen compounds. 21. Enthalpies of combustion of benzoic acid, pentan-1-ol, octan-1-ol, and hexadecan-1-ol,
J. Chem. Thermodyn., 1969, 1, 321-332. [all data]
Chao and Rossini, 1965
Chao, J.; Rossini, F.D.,
Heats of combustion, formation, and isomerization of nineteen alkanols,
J. Chem. Eng. Data, 1965, 10, 374-379. [all data]
Rossini, 1934
Rossini, F.D.,
Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages,
J. Res. NBS, 1934, 13, 189-197. [all data]
Green, 1960
Green, J.H.S.,
Revision of the values of the heats of formation of normal alcohols,
Chem. Ind. (London), 1960, 1215-1216. [all data]
Verkade and Coops, 1927
Verkade, P.E.; Coops, J., Jr.,
Calorimetric researches XIV. Heats of combustion of successive members of homologous series: the normal primary aliphatic alcohols,
Recl. Trav. Chim. Pays-Bas, 1927, 46, 903-917. [all data]
Counsell, Lees, et al., 1968
Counsell, J.F.; Lees, E.B.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds. Part XIX. Low temperature heat capacity and entropy of propan-1-ol, 2-methyl-propan-1-ol,
and pentan-1-ol, 1968, J. [all data]
Parks, Huffman, et al., 1933
Parks, G.S.; Huffman, H.M.; Barmore, M.,
Thermal data on organic compounds. XI. The heat capacities,
entropies and free energies of ten compounds containing oxygen or nitrogen. J. Am. Chem. Soc., 1933, 55, 2733-2740. [all data]
Benson and D'Arcy, 1986
Benson, G.C.; D'Arcy, P.J.,
Excess isobaric heat capacities of some binary mixtures: (a C5-alkanol + n-heptane) at 298.15 K,
J. Chem. Thermodynam., 1986, 18, 493-498. [all data]
Benson and D'Arcy, 1986, 2
Benson, G.C.; D'Arcy, P.J.,
Heat capacities of binary mixtures of n-dodecane with hexane isomers,
Thermochim. Acta, 1986, 102, 75-81. [all data]
Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S.,
Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K,
J. Chem. Thermodynam., 1986, 18, 63-73. [all data]
Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G.,
Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol),
J. Chem. Thermodynam., 1984, 16, 225-235. [all data]
D'Aprano, DeLisi, et al., 1983
D'Aprano, A.; DeLisi, R.; Donato, D.I.,
Thermodynamics of binary mixtures: volumes, heat capacities, and dilution enthalpies for the n-pentanol + 2-methyl-2-butanol system,
J. Solution Chem., 1983, 12, 383-400. [all data]
Arutyunyan, Bagdasaryan, et al., 1981
Arutyunyan, G.S.; Bagdasaryan, S.S.; Kerimov, A.M.,
Experimental investigation of the isobaric heat capacity of n-propyl, n-butyl and n-amyl alcohols at different temperatures and pressures,
Izv. Akad. Nauk Azerb. SSr, 1981, (6), 94-97. [all data]
Griigo'ev, Yanin, et al., 1979
Griigo'ev, B.A.; Yanin, G.S.; Rastorguev, Yu.L.; Thermophysical parameters of alcohols, Tr. GIAP,
54, 1979, 57-64. [all data]
Skold, Suurkuusk, et al., 1976
Skold, R.; Suurkuusk, J.; Wadso, I.,
Thermochemistry of solutions of biochemical model compounds. 7. Aqueous solutions of some amides, t-butanol, and pentanol,
J. Chem. Thermodynam., 1976, 8, 1075-1080. [all data]
Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E.,
Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos,
An. Quim., 1970, 66, 961-967. [all data]
Phillip, 1939
Phillip, N.M.,
Adiabatic and isothermal compressibilities of liquids,
Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]
von Reis, 1881
von Reis, M.A.,
Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht,
Ann. Physik [3], 1881, 13, 447-464. [all data]
Timmermans, 1952
Timmermans, J.,
Freezing points of organic compounds. VVI New determinations.,
Bull. Soc. Chim. Belg., 1952, 61, 393. [all data]
Tschamler, Richter, et al., 1949
Tschamler, H.; Richter, E.; Wettig, F.,
Mixtures of Primry Aliphatic Alcohols with Chlorex and Other Organic Substances. Binary Liquid Mixtures XII.,
Monatsh. Chem., 1949, 80, 749. [all data]
Timmermans and Mattaar, 1921
Timmermans, J.; Mattaar, J.F.,
Freezing points of orgainic substances VI. New experimental determinations.,
Bull. Soc. Chim. Belg., 1921, 30, 213. [all data]
Counsell, Lees, et al., 1968, 2
Counsell, J.F.; Lees, E.B.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds. Part XIX. Low-temperature heat capacity and entropy of propan-1-ol, 2-methylpropan-1-ol, and pentan-1-ol,
J. Chem. Soc., A, 1968, 1819, https://doi.org/10.1039/j19680001819
. [all data]
Parks, Huffman, et al., 1933, 2
Parks, G.S.; Huffman, H.M.; Barmore, M.,
Thermal Data on Organic Compounds. XI. The Heat Capacities, Entropies and Free Energies of Ten Compounds Containing Oxygen or Nitrogen,
J. Am. Chem. Soc., 1933, 55, 7, 2733, https://doi.org/10.1021/ja01334a016
. [all data]
Gude and Teja, 1995
Gude, M.; Teja, A.S.,
Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols,
J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]
Teja, Lee, et al., 1989
Teja, A.S.; Lee, R.J.; Rosenthal, D.J.; Anselme, M.J.,
Correlation of the Critical Properties of Alkanes and Alkanols
in 5th IUPAC Conference on Alkanes and AlkanolsGradisca, 1989. [all data]
Smith, Anselme, et al., 1986
Smith, R.L.; Anselme, M.J.; Teja, A.S.,
The Critical Temperatures of Isomeric Pentanols and Heptanols,
Fluid Phase Equilib., 1986, 31, 161. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Wormald and James, 2000
Wormald, Christopher J.; James, Gareth F.,
Specific Enthalpy Increments for Pentan-1-ol at Temperatures up to 623.2 K and 10.1 MPa,
J. Chem. Eng. Data, 2000, 45, 2, 348-352, https://doi.org/10.1021/je990275y
. [all data]
Aucejo, Burguet, et al., 1994
Aucejo, Antonio; Burguet, M.C.; Monton, Juan B.; Munoz, Rosa; Sanchotello, Margarita; Vazquez, M. Isabel,
Isothermal Vapor-Liquid Equilibria of 1-Pentanol with 2-Methyl-1-butanol, 2-Methyl-2-butanol, and 3-Methyl-2-butanol,
J. Chem. Eng. Data, 1994, 39, 3, 578-580, https://doi.org/10.1021/je00015a040
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Ambrose, Sprake, et al., 1972
Ambrose, D.; Sprake, C.H.S.; Townsend, R.,
Thermodynamic properties of organic oxygen compounds XXIX. The vapour pressure of diethyl ether,
The Journal of Chemical Thermodynamics, 1972, 4, 2, 247-254, https://doi.org/10.1016/0021-9614(72)90063-8
. [all data]
Majer, Svoboda, et al., 1985
Majer, V.; Svoboda, V.; Lencka, M.,
Enthalpies of vaporization and cohesive energies of dimethylpyridines and trimethylpyridines,
The Journal of Chemical Thermodynamics, 1985, 17, 4, 365-370, https://doi.org/10.1016/0021-9614(85)90133-8
. [all data]
Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J.,
Physical and thermodynamic properties of aliphatic alcohols,
J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]
Counsell, Fenwick, et al., 1970
Counsell, J.F.; Fenwick, J.O.; Lees, E.B.,
Thermodynamic properties of organic oxygen compounds 24. Vapour heat capacities and enthalpies of vaporization of ethanol, 2-methylpropan-1-ol, and pentan-1-ol,
The Journal of Chemical Thermodynamics, 1970, 2, 3, 367-372, https://doi.org/10.1016/0021-9614(70)90007-8
. [all data]
Kemme and Kreps, 1969
Kemme, Herbert R.; Kreps, Saul I.,
Vapor pressure of primary n-alkyl chlorides and alcohols,
J. Chem. Eng. Data, 1969, 14, 1, 98-102, https://doi.org/10.1021/je60040a011
. [all data]
Ambrose, Sprake, et al., 1975
Ambrose, D.; Sprake, C.H.S.; Townsend, R.,
Thermodynamic Properties of Organic Oxygen Compounds. XXXVII. Vapour Pressures of Methanol, Ethanol, Pentan-1-ol, and Octan-1-ol from the Normal Boiling Temperature to the Critical Temperature,
J. Chem. Thermodyn., 1975, 7, 2, 185-190, https://doi.org/10.1016/0021-9614(75)90267-0
. [all data]
Ambrose and Sprake, 1970
Ambrose, D.; Sprake, C.H.S.,
Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols,
The Journal of Chemical Thermodynamics, 1970, 2, 5, 631-645, https://doi.org/10.1016/0021-9614(70)90038-8
. [all data]
van Miltenburg and van den Berg, 2004
van Miltenburg, J. Cees; van den Berg, Gerrit J.K.,
Heat Capacities and Derived Thermodynamic Functions of 1-Propanol between 10 K and 350 K and of 1-Pentanol between 85 K and 370 K,
J. Chem. Eng. Data, 2004, 49, 3, 735-739, https://doi.org/10.1021/je0499768
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Higgins and Bartmess, 1998
Higgins, P.R.; Bartmess, J.E.,
The Gas Phase Acidities of Long Chain Alcohols.,
Int. J. Mass Spectrom., 1998, 175, 1-2, 71-79, https://doi.org/10.1016/S0168-1176(98)00125-6
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T.,
The gas phase acidity of aliphatic alcohols,
J. Am. Chem. Soc., 1983, 105, 2203. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M.,
Intermolecular Forces in Organic Clusters,
J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024
. [all data]
Connett, 1970
Connett, J.E.,
Chemical equilibria. Part III. Dehydrogenation of pentan-1-ol, pentan-2-ol, and 3-methylbutan-2-ol,
J. Chem. Soc. A, 1970, 1284-1286. [all data]
Butler, Ramchandani, et al., 1935
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W.,
The Solubility of Non-Electrolytes. Part 1. The Free Energy of Hydration of Some Alphatic Alcohols,
J. Chem. Soc., 1935, 280-285, https://doi.org/10.1039/jr9350000280
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°gas Entropy of gas at standard conditions S°liquid Entropy of liquid at standard conditions T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.